Data:

X – number of letters in the surnameY – number of letters in the name

take-off mass $(m_{TO}) = (X+Y)*150 \text{ kg}$

wing span = $10+0.5*SQR((X-Y)^2)$

wing area = 10+(X+Y)/5taper ratio = 0.95*Y/(X+Y)

 $C_{L_{max}} = 1.4+(X+Y)/100$

air density $\rho = 1.225$ kg/m³ gravity acceleration g = 9.81 kg/s²

To be computed:

- Airplane parameters:
 - Minimum airspeed
 - Wing aspect ratio
 - o Wing chords:
 - root chord,
 - tip chord,
 - mean geometric chord,
 - mean aerodynamic chord.
- lift coefficient distribution C_z (Schrenk's distribution) for <u>lift coefficient equal to 1</u> (divide wing in 4 slices) attention it must be lift coefficient distribution, not lift force!
- estimate max. value of bending moment and shearing force in the root (cantilever wing), assuming max. load factor n=7 (neglect mass of the wing)
- compute bending moment and shearing force distribution for n=1, assuming that wing mass is equal to 15% m_{TO} and is distributed according to the wing area. First two segments contain fuel tanks. Their mass with fuel is equal to 15% m_{TO} and is distributed also according to the wing area. Moreover there is additional fuel tank at the wingtip. It contains 100 kg of fuel.