Mass analysis by D.P. Raymer: Aircraft Design, A conceptual Approach, AIAA Series

Group	Group
STRUCTURES GROUP	EQUIPMENT GROUP
Wing	Flight controls
Tail-horizontal/canard	APU
vertical	Instruments
ventral	Hydraulic
Body	Pneumatic
Alighting gear-main	Electrical
auxiliary	Avionics
arresting gear	Armament
catapult gear	Furnishings
Nacelle/engine section	Air conditioning/ECS
Air induction system	Anti-icing
	Photographic
	Load and handling
PROPULSION GROUP	TOTAL WEIGHT EMPTY
Engine—as installed Accessory gearbox and drive	USEFUL LOAD GROUP
Exhaust system	Crew
Cooling provisions	Fuel-usable
Engine controls	-trapped
Starting system	Oil
Fuel system/tanks	Passengers
	Cargo/baggage
	Guns
	Ammunition
	Pylons and racks
	Expendable weapons
	Flares/chaff
	TAKEOFF GROSS WEIGHT
	Flight design gross weight
	Landing design gross weight
	DCPR weight

 Table 15.1
 Group weight format

Weight groups given to mass analysis

	8	Transports	General	지금 동안 이상을 가 같을	Approximate
Item	Fighters	and bombers	aviation	Multiplier ^a	location
Wing	9.0	10.0	2.5	$S_{\text{exposed planform ft}}^2$	40% MAC
Horizontal tail	4.0	5.5	2.0	$S_{\text{exposed planform ft}^2}$	40% MAC
Vertical tail	5.3	5.5	2.0	$S_{\text{exposed planform ft}^2}$	40% MAC
Fuselage	4.8	5.0	1.4	$S_{\text{wetted area ft}}^2$	40-50% length
Landing gear ^b	.033	.043	.057	TOGW (lb)	-
	.045 Navy				
Installed engine	1.3	1.3	1.4	Engine weight (lb)	이 것 이 것 수 있었다.
"All-else empty"	.17	.17	.10	TOGW (lb)	40-50% length

^aResults are in pounds.

^b15% to nose gear; 85% to main gear.

Masses of basic elements of an aircraft

Missiles	
Harpoon (AGM-84 A) Phoenix (AIM-54 A) Sparrow (AIM-7) Sidewinder (AIM-9) Pylon and launcher	1200 lb 1000 lb 500 lb 200 lb .12 W _{missile}
M61 Gun	
Gun 940 rds ammunition	250 lb 550 lb
Seats	
Flight deck Passenger Troop	60 lb 32 lb 11 lb
Instruments	
 Altimeter, airspeed, accelerometer, rate of climb, clock, compass, turn & bank, Mach, tachometer, manifold pressure, etc. Gyro horizon, directional gyro Heads-up display 	1-2 lb each 4-6 lb each 40 lb
Lavatories	
Long range aircraft Short range aircraft Business/executive aircraft	$\begin{array}{c} 1.11 \ N_{\rm pass}^{1.33} \\ 0.31 \ N_{\rm pass}^{1.33} \\ 3.90 \ N_{\rm pass}^{1.33} \end{array}$
Arresting gear	
Air Force-type Navy-type	$.002 W_{dg}$ $.008 W_{dg}$
Catapult gear	
Navy carrier-based	.003 W_{dg}
Folding Wing	
Navy carrier based	.06 $W_{\rm wing}$

2

=

Miscellaneous masses

nts
igi
Хe
×
tac
At
ter
βĥ

 $W_{\text{wing}} = 0.0103 K_{\text{dw}} K_{\text{vs}} (W_{\text{dg}} N_z)^{0.5} S_w^{0.622} A^{0.785} (t/c)_{\text{root}}^{-0.4}$

 $\times (1 + \lambda)^{0.05} (\cos \Lambda)^{-1.0} S_{csw}^{0.04}$

$$W_{\text{horizontal tail}} = 3.316 \left(1 + \frac{F_w}{B_h}\right)^{-2.0} \left(\frac{W_{\text{dg}}N_z}{1000}\right)^{0.260} S_{\text{ht}}^{0.806}$$

 $W_{\text{vertical tail}} = 0.452 K_{\text{rht}} (1 + H_i/H_v)^{0.5} (W_{\text{dg}} N_z)^{0.48} S_{\text{v}}^{0.718} M^{0.341}$ $\times L_t^{-1.0} (1 + S_r/S_{\text{v}})^{0.348} A_{\text{v}}^{0.223} (1 + \lambda)^{0.25} (\cos \Lambda_v)^{-0.323}$

 $W_{\text{fuselage}} = 0.499 K_{\text{dwf}} W_{\text{dg}}^{0.35} N_{\text{z}}^{0.25} L^{0.5} D^{0.849} W^{0.685}$

 $W_{\text{main landing}} = K_{\text{cb}} K_{\text{tpg}} (W_l N_l)^{0.25} L_m^{0.973}$

 $W_{\text{nose landing}} = (W_l N_l)^{0.290} L_n^{0.5} N_{\text{nw}}^{0.525}$

 $W_{\text{engine}}^{\text{engine}} = 0.013 N_{\text{en}}^{0.795} T^{0.579} N_{\text{z}}$

 $W_{\rm firewall} = 1.13 \, S_{\rm fw}$

 $W_{\text{engine}} = 0.01 \ W_{\text{en}}^{0.717} N_{\text{en}} N_z$

 $W_{\text{air induction}} = 13.29 K_{\text{vg}} L_d^{0.643} K_d^{0.182} N_{\text{en}}^{1.498} (L_s/L_d)^{-0.373} D_e$

where K_d and L_s are from Fig. 15.2.

 $W_{\text{tailpipe}} = 3.5 D_e L_{\text{tp}} N_{\text{en}}$

 $W_{\text{engine}}_{\text{cooling}} = 4.55 D_e L_{\text{sh}} N_{\text{en}}$

 $W_{\rm oil\ cooling}=37.82\,N_{\rm en}^{1.023}$

 $W_{\text{engine}}_{\text{controls}} = 10.5 N_{\text{en}}^{1.008} L_{\text{ec}}^{0.222}$

 $W_{\text{starter}} = 0.025 \, T_e^{0.760} N_{\text{en}}^{0.72}$ (pneumatic)

$$W_{\text{inel system}} = 7.45 V_{t}^{0.47} \left(1 + \frac{V_{t}}{V_{t}} \right)^{-0.095} \left(1 + \frac{V_{e}}{V_{t}} \right) N_{t}^{0.066} N_{\text{en}}^{0.052} \left(\frac{T \cdot \text{SFC}}{1000} \right)^{0.249}$$

 $W_{\text{flight}} = 36.28 M^{0.003} S_{\text{cs}}^{0.489} N_{s}^{0.484} N_{c}^{0.127}$

 $W_{\text{instruments}} = 8.0 + 36.37 N_{\text{en}}^{0.676} N_t^{0.237} + 26.4(1 + N_{\text{ei}})^{1.356}$

 $W_{\text{hydraulics}} = 37.23 K_{\text{vsh}} N_u^{0.664}$

 $W_{\text{electrical}} = 172.2 K_{mc} R_{\text{kva}}^{0.152} N_{c}^{0.10} L_{a}^{0.091} N_{\text{gen}}^{0.091}$

 $W_{\rm avionics} = 2.117 W_{\rm uav}^{0.933}$

 $W_{\rm furnishings} = 217.6 N_c$

 $W_{\text{air conditioning}} = 201.6[(W_{\text{uav}} + 200 N_c)/1000]^{0.735}$ and anti-ice

 $W_{
m handling} = 3.2 imes 10^{-4} W_{
m dg}$

Formulas to compute masses of combat aircraft

Cargo/Transport Weights

 $W_{\text{wing}} = 0.0051 (W_{\text{dg}}N_z)^{0.557} S_w^{0.649} A^{0.5} (t/c)_{\text{root}}^{-0.4} (1+\lambda)^{0.1}$

 $\times (\cos \Lambda)^{-1.0} S_{csw}^{0.1}$

$$\begin{split} W_{\text{brizontal}} &= 0.0379 K_{\text{uht}} (1 + F_w/B_h)^{-0.25} W_{\text{dg}}^{0.639} N_z^{0.10} S_{\text{ht}}^{0.75} L_t^{-1.0} \\ &\times K_y^{0.704} (\cos \Lambda_{\text{ht}})^{-1.0} A_h^{0.166} (1 + S_e/S_{\text{ht}})^{0.1} \end{split}$$

 $W_{\text{tail}} = 0.0026(1 + H_t/H_v)^{0.225} W_{\text{dg}}^{0.536} N_z^{0.536} L_t^{-0.5} S_{\text{vt}}^{0.5K_z} K_z^{0.875}$ $\times (\cos \Delta_v)^{-1} A_v^{0.35} (t/c)_{\text{root}}^{-0.5}$

 $W_{\text{fuscage}} = 0.3280 K_{\text{door}} K_{\text{Lg}} (W_{\text{dg}} N_z)^{0.5} L^{0.25} S_{f}^{0.302} (1 + K_{\text{ws}})^{0.04} (L/D)^{0.10}$

 $W_{\text{main landing}} = 0.0106 K_{\text{mp}} W_l^{0.888} N_l^{0.25} L_m^{0.4} N_{\text{mw}}^{0.221} N_{\text{mss}}^{-0.5} V_{\text{stall gear}}^{0.11}$

 $W_{\text{nose landing}} = 0.032 K_{np} W_l^{0.646} N_l^{0.2} L_n^{0.5} N_{nw}^{0.45}$

 $W_{\text{nacelle}} = 0.6724 K_{ng} N_{L^{1}}^{0.10} N_{w}^{0.294} N_{z}^{0.119} W_{ec}^{0.611} N_{en}^{0.984} S_{n}^{0.224}$

 $W_{\text{engine}}_{\text{controls}} = 5.0 N_{\text{en}} + 0.80 L_{\text{ec}}$

$$W_{\text{starter}}_{\text{(pneumatic)}} = 49.19 \left(\frac{N_{\text{en}} W_{\text{en}}}{1000} \right)^{0.541}$$

 $W_{\text{fuel}} = 2.405 V_t^{0.606} (1 + V_i/V_t)^{-1.0} (1 + V_p/V_t) N_t^{0.5}$ system

 $W_{\text{flight}} = 145.9 N_f^{0.554} (1 + N_m/N_f)^{-1.0} S_{\text{cs}}^{0.20} (I_y \times 10^{-6})^{0.07}$

 $W_{\rm APU}_{\rm installed} = 2.2 \, W_{\rm APU}_{\rm uninstalled}$

 $W_{\text{instruments}} = 4.509 K_r K_{\text{tp}} N_c^{0.541} N_{\text{en}} (L_f + B_w)^{0.5}$

 $W_{\text{hydraulics}} = 0.2673 N_f (L_f + B_w)^{0.937}$

 $W_{\rm electrical} = 7.291 R_{\rm kva}^{0.782} L_a^{0.346} N_{\rm gen}^{0.10}$

 $W_{\rm avionics} = 1.73 W_{\rm uav}^{0.983}$

 $W_{\rm furnishings} = 0.0577 N_c^{0.1} W_c^{0.393} S_f^{0.75}$

 $W_{\rm air} = 62.36 N_p^{0.25} (V_{pr}/1000)^{0.604} W_{\rm uav}^{0.10}$

 $W_{\rm anti-ice} = 0.002 W_{\rm dg}$

 $W_{\rm handling} = 3.0 \times 10^{-4} W_{\rm dg}$

 $W_{\text{millitary cargo}} = 2.4 \times (\text{cargo floor area, ft}^2)$

Formulas to compute masses of transport aircraft

General-Aviation Weights

$$W_{\rm wing} = 0.036 S_w^{0.758} W_{\rm fw}^{0.0035} \left(\frac{A}{\cos^2 \Lambda}\right)^{0.6} q^{0.006} \lambda^{0.04} \left(\frac{100 \ t/c}{\cos \Lambda}\right)^{-0.3} (N_z W_{\rm dg})^{0.49}$$

$$W_{\text{horizontal}} = 0.016 (N_z W_{\text{dg}})^{0.414} q^{0.168} S_{\text{ht}}^{0.896} \left(\frac{100 \ t/c}{\cos\Lambda}\right)^{-0.12} \times \left(\frac{A}{\cos^2\Lambda_{\text{ht}}}\right)^{0.043} \lambda_h^{-0.02}$$

$$W_{\text{vertical}} = 0.073 \left(1 + 0.2 \frac{H_t}{H_v} \right) (N_z W_{\text{dg}})^{0.376} q^{0.122} S_{\text{vt}}^{0.873} \left(\frac{100 \ t/c}{\cos \Lambda_{\text{vt}}} \right)^{-0.49} \times \left(\frac{A}{\cos^2 \Lambda_{\text{vt}}} \right)^{0.357} \lambda_{\text{vt}}^{0.039}$$

$$W_{\text{fuselage}} = 0.052 \text{ S}_{f}^{1.086} (N_z W_{\text{dg}})^{0.177} L_t^{-0.051} (L/D)^{-0.072} q^{0.241} + W_{\text{press}}$$

 $W_{\text{main landing}} = 0.095 (N_l W_l)^{0.768} (L_m / 12)^{0.409}$

 $W_{\text{nose landing}} = 0.125 (N_l W_l)^{0.566} (L_n / 12)^{0.845}$

 $W_{\text{installed engine}} = 2.575 W_{\text{en}}^{0.922} N_{\text{en}}$

$$W_{\text{fuel system}} = 2.49 V_t^{0.726} \left(\frac{1}{1 + V_i/V_t}\right)^{0.363} N_t^{0.242} N_{en}^{0.157}$$

 $W_{\text{flight}}_{\text{controls}} = 0.053 L^{1.536} B_w^{0.371} (N_z W_{\text{dg}} \times 10^{-4})^{0.80}$

 $W_{\rm hydraulics} = 0.001 \ W_{\rm dg}$

 $W_{\text{electrical}} = 12.57 (W_{\text{fuel system}} + W_{\text{avionics}})^{0.51}$

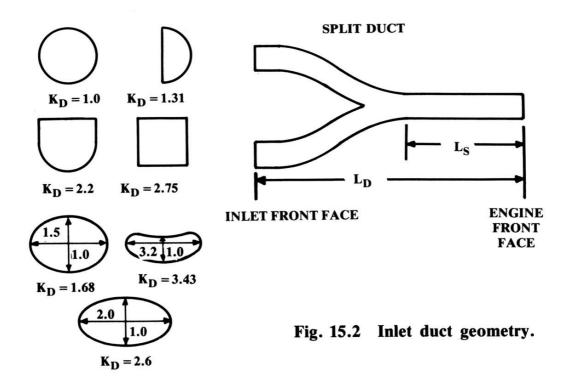
$$W_{\rm avionics} = 2.117 \ W_{\rm uav}^{0.933}$$

 $W_{\text{air conditioning}} = 0.265 W_{\text{dg}}^{0.52} N_p^{0.68} W_{\text{avionics}}^{0.17} M^{0.08}$

 $W_{\rm furnishings} = 0.0582 \ W_{\rm dg} - 65$

Formulas to compute masses in "General aviation" group

Weights Equations Terminology


neights	Equations Terminology
Α	= aspect ratio
B_h	= horizontal tail span, ft
B_w	= wing span, ft
D	= fuselage structural depth, ft
D_e	= engine diameter, ft
F_w	= fuselage width at horizontal tail intersection, ft
H_t	= horizontal tail height above fuselage, ft
H_t/H_v	= 0.0 for conventional tail; 1.0 for "T" tail
H_v	= vertical tail height above fuselage, ft
I_y	= yawing moment of inertia, $lb-ft^2$ (see Chap. 16)
	a ra
K_{cb}	= 2.25 for cross-beam (F-111) gear; $= 1.0$ otherwise
K_d	= duct constant (see Fig. 15.2)
K _{door}	= 1.0 if no cargo door; = 1.06 if one side cargo door; = 1.12
	if two side cargo doors; $= 1.12$ if aft clamshell door; $= 1.25$ if
	two side cargo doors and aft clamshell door
K_{dw}	= 0.768 for delta wing; $= 1.0$ otherwise
$K_{\rm dwf}$	= 0.774 for delta wing aircraft; $= 1.0$ otherwise
K_{Lg}	= 1.12 if fuselage-mounted main landing gear; = 1.0 otherwise
K_{mc}	= 1.45 if mission completion required after failure; = 1.0
17	otherwise
K_{mp}	= 1.126 for kneeling gear; $= 1.0$ otherwise
K_{ng}	= 1.017 for pylon-mounted nacelle; $= 1.0$ otherwise
K_{np}	= 1.15 for kneeling gear; = 1.0 otherwise
K_p	= 1.4 for engine with propeller or 1.0 otherwise
K _r	= 1.133 if reciprocating engine; $= 1.0$ otherwise
$K_{\rm rht}$	= 1.047 for rolling tail; = 1.0 otherwise
$K_{\rm tp}$	= 0.793 if turboprop; $= 1.0$ otherwise
$K_{\rm tpg}$	= 0.826 for tripod (A-7) gear; = 1.0 otherwise
$K_{\rm tr}$	= 1.18 for jet with thrust reverser or 1.0 otherwise
Kuht	= 1.143 for unit (all-moving) horizontal tail; = 1.0 otherwise
$K_{\rm vg}$	= 1.62 for variable geometry; $= 1.0$ otherwise
K_{vs}	= 1.19 for variable sweep wing; = 1.0 otherwise
$K_{\rm vsh}$	= 1.425 if variable sweep wing; = 1.0 otherwise
$K_{\rm ws}$	$= 0.75[1 + 2\lambda)/(1 + \lambda)] (B_w \tan \Lambda/L)$
K_{y}	
$K_y K_z$	= aircraft pitching radius of gyration, ft ($\cong 0.3L_i$)
-	= aircraft yawing radius of gyration, ft ($\cong L_t$)
	= fuselage structural length, ft (excludes radome, tail cap)
L_a	= electrical routing distance, generators to avionics to cockpit, ft
L_d	= duct length, ft
L_{ec}	= length from engine front to cockpit—total if multiengine, ft
L_f	= total fuselage length
L_m	= length of main landing gear, in.
L_n	= nose gear length, in.
L_s	= single duct length (see Fig. 15.2)
$L_{\rm sh}$	= length of engine shroud, ft
L_t	= tail length; wing quarter-MAC to tail quarter-MAC, ft
$L_{\rm tp}$	= length of tailpipe, ft
Μ	= Mach number
N_c	= number of crew
N_{ci}	= 1.0 if single pilot; = 1.2 if pilot plus backseater; = 2.0 pilot and
	copassenger
$N_{ m en}$	= number of engines
N_f	= number of functions performed by controls (typically 4–7)
$N_{\rm gen}$	= number of generators (typically = N_{en})
N_l	= ultimate landing load factor; $= N_{\text{gear}} \times 1.5$
N_{Lt}	= nacelle length, ft
N_m	= number of mechanical functions (typically 0-2)
$N_{\rm mss}$	= number of main gear shock struts
$N_{\rm mw}$	= number of main gear shock struts
$N_{\rm nw}$	= number of nose wheels

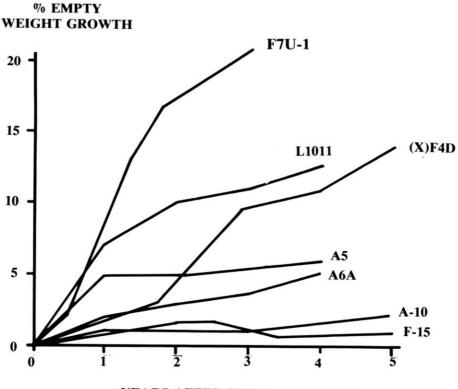

N_p	= number of personnel onboard (crew and passengers)
N_s	= number of flight control systems
N_t	= number of fuel tanks
N_u	= number of hydraulic utility functions (typically 5-15)
N_w	= nacelle width, ft
N_z	= ultimate load factor; = $1.5 \times \text{limit load factor}$
q	= dynamic pressure at cruise, lb/ft^2
R_{kva}	= system electrical rating, $kv \cdot A$ (typically 40-60 for transports,
	110-160 for fighters & bombers)
S_{cs}	= total area of control surfaces, ft^2
Scsw	= control surface area (wing-mounted), ft^2
S_e	= elevator area, ft
S_f	= fuselage wetted area, ft^2
S_{fw}	= firewall surface area, ft^2
$S_{ m ht}$	= horizontal tail area
S_n	= nacelle wetted area, ft ²
S_r	= rudder area, ft ²
$S_{\rm vt}$	= vertical tail area, ft ²
S_w	= trapezoidal wing area, ft ²
SFC	= engine specific fuel consumption—maximum thrust
T	= total engine thrust, lb
T_e	= thrust per engine, lb
V_i	= integral tanks volume, gal
V_p	= self-sealing "protected" tanks volume, gal
V_p V_{pr}	= volume of pressurized section, ft ³
V_t	= total fuel volume, gal
W	= fuselage structural width, ft
W_c	= maximum cargo weight, lb
$W_{\rm dg}$	= design gross weight, lb
$W_{\rm ec}$	= weight of engine and contents, lb (per nacelle),
	$\cong 2.331 \ W_{\text{engine}}^{0.901} \ K_p K_{\text{tr}}$
$W_{\rm en}$	= engine weight, each, lb
$W_{\rm fw}$	= weight of fuel in wing, lb
W_l	= landing design gross weight, lb
W _{press}	= weight penalty due to pressurization,
	$= 11.9 + (V_{\rm pr}P_{\rm delta})^{0.271}$, where $P_{\rm delta} = {\rm cabin \ pressure}$
	differential, psi (typically 8 psi)
$W_{\rm uav}$	= uninstalled avionics weight, lb (typically = 800-1400 lb)
Λ	= wing sweep at 25% MAC

 Table 15.4
 Weights estimation "fudge factors"

Category	Weight group	Fudge factor (multiplier)
Advanced	(Wing	0.85
composites	Tails	0.83
•	Fuselage/nacelle	0.90
	Landing gear	0.95
	Air induction system	0.85
Braced wing	Wing	0.82
Wood fuselage	Fuselage	1.60
Steel tube fuselage	Fuselage	1.80
Flying boat hull	Fuselage	1.25

Mass correction for non-typical materials

YEARS AFTER FIRST PROTOTYPE

Fig. 15.3 Aircraft weight growth.