Warszawa, 12-20-2009

Spis treści

1.	Wpro	adzenie4				
	1.1.	Podstawy teoretyczne metody panelowej	4			
	1.1.1.	. Spis ważniejszych oznaczeń:	4			
	1.1.2.	Wprowadzenie	5			
	1.1.3.	. Model fizyczny i matematyczny opływu	5			
	1.1.4.	. Metody obliczeniowa	6			
	1.2.	Skrócony opis pakietu PANUKL – główne podprogramy i ich funkcjonalności	. 10			
	1.2.1.	. Program zarządzający – GRIDVIEW	. 10			
	1.2.2.	. Program przygotowujący dane MESH	. 11			
	1.2.3.	. Programy do obliczeń właściwych NEIGH, PANUKL i PRESS	. 11			
	1.3.	Pliki danych	. 18			
	1.3.1.	. Opis plików danych opisujących geometrię analizowanego obiektu	. 18			
	1.3.2.	. Krótki opis plików wynikowych	. 26			
2.	2. Instalacja programu		. 30			
	2.1.	Instalacja w systemie operacyjnym MS WINDOWS	. 30			
	2.2.	Instalacja w systemie operacyjnym LINUX	. 33			
3.	Rozpo	oczęcie pracy w systemie PANUKL	. 34			
	3.1.	Opis Interfejsu graficznego, wraz z opisem dostępnych opcji oraz oferowanych możliwości	. 34			
	3.1.1.	. Opis funkcjonalności Menu – FILE	. 34			
	3.1.2.	. Opis funkcjonalności Menu – DRAW	. 36			
	3.1.3.	. Opis funkcjonalności Menu – DATA	. 37			
	3.1.4.	. Opis funkcjonalności Menu – CREATE	. 38			
	3.1.5.	. Opis funkcjonalności Menu – XFOIL	. 47			
	3.1.6.	. Opis funkcjonalności Menu – TOOLS	. 52			
	3.1.7.	. Opis funkcjonalności Menu – HELP	. 55			

3.2.	Procedura obliczeniowa krok po kroku – możliwe scenariusze	. 56
3.3.	Przepływ informacji pomiędzy programami w trakcie prowadzenia obliczeń	. 58
4. Dod	latki i uzupełnienia	. 59
4.1.	Funkcja łączenia siatek modeli	. 59
4.2.	Tworzenie skomplikowanych siatek w oparciu o funkcję – CONNECT TWO GRIDS	. 62
4.3.	Opis zewnętrznego podprogramu do generacji piku geometrii kadłuba – FUSELAGE DATA	. 67
4.4.	Eksport geometrii z systemu UG NX4 do programu PANUKL	. 70

1. Wprowadzenie

Pakiet *PANUKL 2002* służy do obliczeń aerodynamicznych samolotu, metodą panelową niskiego rzędu. Jest on kontynuacją pakietu programów, powstałych w połowie lat dziewięćdziesiątych ubiegłego wieku (**PAN**eli **UKL**ad **96**). Zasadnicze zmiany, w tym stworzenie środowiska okienkowego, zostały dokonane w latach 2001-2002, stąd drugi człon nazwy pakietu.

Poniżej przedstawione zostaną podstawy teoretyczne oraz opis podstawowych funkcjonalności i sposobu użycia. Szczegółowy przewodnik i instrukcja obsługi znajduje się w rozdziałach następnych.

1.1. Podstawy teoretyczne metody panelowej

1.1.1. Spis ważniejszych oznaczeń:

- a_∞ prędkość dźwięku przypływu niezaburzonego
- b rozpiętość płata
- Cm współczynnik momentu pochylającego względem 1/4 SCA
- Cx współczynnik oporu
- Cz współczynnik siły nośnej
- p ciśnienie całkowite
- Q prędkość kątowa pochylania
- S powierzchnia odniesienia
- V_{∞} prędkość przepływu niezaburzonego
- x, y, z współrzędne kartezjańskie w układzie zaczepionym w nosku kadłuba lub płata (oś x wzdłuż cięciwy c_R, oś z prostopadle do cięciwy c_R na grzbiet płata oś y prostopadle i wzdłuż rozpiętości)
- lpha kąt natarcia
- Φ pełny potencjał prędkości
- Φ_∞ potencjał prędkości w nieskończoności
- Φ_i potencjał prędkości wewnątrz opływanej bryły
- ϕ potencjał prędkości zaburzeń
- κ wykładnik izentropy
- Λ wydłużenia geometryczne płata (b²/S)
- μ natężenie dipola
- ρ gęstość powietrza
- σ natężenie źródła

1.1.2. Wprowadzenie

Rozwój metod numerycznych oraz duże zwiększenie mocy obliczeniowej komputerów spowodowały, że w obliczeniach opływu ciał coraz częściej sięga się po modele *Eulera* (nielepki) a nawet *Naviera-Stokesa* (lepki). Mogłoby się wydawać, że modele potencjalne przeżyły się. Jednak pomimo wielu uproszczeń w porównaniu z modelem płynu lepkiego są nadal bardzo atrakcyjnym narzędziem [1, 2, 3]. W wielu zagadnieniach bowiem, niskie koszty obliczeń przy użyciu metod bazujących na modelach potencjalnych rekompensują ich mniejszą dokładność.

1.1.3. Model fizyczny i matematyczny opływu

Najistotniejszymi założeniami poczynionymi przy budowie modelu fizycznego opływu są: nielepkość płynu oraz bezwirowość (za wyjątkiem śladu wirowego) opływu. Wpływ lepkości jest symulowany przez warunek *Kutty-Żukowskiego*, który można interpretować jako zerowanie cyrkulacji na krawędzi spływu branej na jednostkę długości.

Model matematyczny stanowią następujące równania:

- równanie ciągłości:

$$\frac{\partial \rho}{\partial t} + div(\rho V) = 0 \tag{1}$$

- równanie *Eulera*:

$$\frac{\partial V}{\partial t}$$
 + (V grad) V = $\frac{1}{\rho}$ grad p (2)

- równanie stanu:

$$p = p_{\infty}(\frac{\rho}{\rho_{\infty}})^{\kappa}$$
(3)

Z faktu bezwirowości (rot V = 0) wynika, że istnieje funkcja skalarna, zwana potencjałem prędkości taka, że :

$$\operatorname{grad} \Phi(\mathbf{x}, \mathbf{y}, \mathbf{z}, \mathbf{t}) = \mathbf{V} \tag{4}$$

Jeżeli przyjmiemy dodatkowo, że $\Phi = \Phi_{\infty} + \phi$ oraz, że: $mod\nabla\phi \ll U_{\infty}$, $mod\nabla\phi \ll a_{\infty}$ oraz $mod\nabla\phi \ll (U_{\infty} - a_{\infty})$ to otrzymamy:

$$\frac{1}{a_{\infty}} \left(\frac{\partial}{\partial t} + V_{\infty} \frac{\partial}{\partial x}\right)^2 \phi = \nabla \phi$$
 (5)

przyjmując dodatkowo, że przepływ jest ustalony oraz nieściśliwy otrzymujemy:

$$\nabla \phi = 0$$
 (6)

1.1.4. Metody obliczeniowa

Metoda obliczeniowa silnie zależy od sposobu modelowania bryły samolotu. Model fizyczny zdefiniowany w rozdziale 1.1.3 dotyczył jedynie opływu i pomijał opływany obiekt. Zasadniczo stosuje się dwa podejścia. Obiekt modeluje się przy pomocy cienkich powierzchni lub traktuje się samolot jako bryłę trójwymiarową. Pakiet *PANUKL 2002* bazuje na metodzie panelowej niskiego rzędu polegającej na rozwiązaniu wewnętrznego zagadnienia *Dirichleta* (metoda *Hessa* [7]). Powierzchnia trójwymiarowej bryły samolotu jest dzielona na czworokątne płaskie panele. Przyjmuje się, że ślad wirowy jest płaski i ciągnie się równolegle do prędkości niezaburzonej lub cięciwy (ostrza).

Podstawą metody jest rozwiązanie równania *Laplace*`a dla pełnego potencjału prędkości:

$$\nabla \Phi = 0 \tag{7}$$

które może przyjąć postać [6]:

$$\Phi(\mathbf{x},\mathbf{y},\mathbf{z}) = \frac{1}{4\pi} \int_{samolot + s\,lad} \mu \frac{\partial}{\partial \mathbf{n}} \left(\frac{1}{\mathbf{r}}\right) d\mathbf{S} - \frac{1}{4\pi} \int_{samolot} \sigma \frac{1}{\mathbf{r}} d\mathbf{S} + \Phi_{\infty} \qquad (8)$$

Przyjmując następujące warunki brzegowe:

- wewnętrzny *Dirichleta* na powierzchni opływanej bryły:

$$\frac{1}{4\pi} \int_{samolot + siad} \mu \frac{\partial}{\partial \mathbf{n}} \left(\frac{1}{r}\right) d\mathbf{S} - \frac{1}{4\pi} \int_{samolot} \sigma \frac{1}{r} d\mathbf{S} = 0$$
(9)

gdzie:

natężenie dipola: $\mu = -(\Phi - \Phi_i),$ (10)

natężenie źródła:
$$\sigma = \partial \mu / \partial \boldsymbol{n}$$
. (11)

- *Kutty-Żukowskiego* na krawędzi spływu (ostrze):

$$\Delta p(\mathbf{x}, \mathbf{y})_{\rm TE} = 0 \tag{12}$$

-na śladzie wirowym:

Rys. 1 – Aproksymacja powierzchni bryły samolotu układem paneli

oraz zakładając, że potencjał prędkości wewnątrz opływanej bryły Φ_i jest równy potencjałowi w nieskończoności Φ_{∞} otrzymujemy równanie całkowe w postaci (9), które po aproksymacji bryły samolotu układem płaskich paneli (Rys. 1) możemy przybliżyć układem równań liniowych, w których niewiadomymi są natężenia dipoli μ (stałe na panelu):

$$\sum_{k=1}^{N} C_{k} \mu_{k} + \sum_{l=1}^{N_{w}} C_{l} \mu_{l} + \sum_{k=1}^{N} B_{k} \sigma_{k} = 0$$
 (14)

gdzie C_k, C_l i B_k to aerodynamiczne współczynniki wpływu (Rys. 2):

$$C_{k} = \frac{1}{4\pi} \int_{1234} \frac{\partial}{\partial n} \left(\frac{1}{r_{k}} \right) dS_{k} ; B_{k} = -\frac{1}{4\pi} \int_{1234} \frac{1}{r_{k}} dS_{k}$$
(15)

N - liczba paneli na bryle samolotu,

N_w - liczba paneli na śladzie,

 S_{1234} - powierzchnia k-tego panelu.

Rys. 2 – Wpływ panelu K w punkcie P

Układ równań (14) wymaga jeszcze wyznaczenia natężenia źródłowości σ (stałego na panelu), którą (wykorzystując związki (10) i (11) oraz warunek, że na brzegu obszaru zamkniętego mamy $\partial \Phi_i / \partial \mathbf{n} = 0$) możemy zdefiniować następująco:

$$\boldsymbol{\sigma} = -\boldsymbol{n} \cdot \mathbf{V}_{\boldsymbol{\alpha}} \tag{16}$$

Aby zamknąć układ równań należy powiązać niewiadome natężenia dipoli na śladzie wirowym z natężeniami dipoli na panelach bryły samolotu. W tym celu wykorzystano warunek *Kutty-Żukowskiego* mówiący, że cyrkulacja na jednostkę długości (wzdłuż y) na krawędzi spływu jest równa zeru, oraz fakt, że natężenie dipola na jednostkę długości (wzdłuż y) jest równe cyrkulacji ze znakiem ujemnym [6]. W wyniku otrzymamy:

$$\mu_{\rm TE} = \mu_{\rm W} = {\rm const} \tag{17}$$

Natężenie dipoli na krawędzi spływu jest równe różnicy pomiędzy natężeniami dipoli na górnej i dolnej powierzchni, w pobliżu krawędzi spływu. Wykorzystując związek (17), natężenie dipoli na śladzie można wyznaczyć z zależności Rys. 3:

$$\mu_{\rm W} = \mu_{\rm U} - \mu_{\rm L} \tag{18}$$

Rys. 3 – Związek między natężeniami dipoli na krawędzi spływu i śladzie wirowym

Związek (18) pozwala na zamknięcie układu równań (14). Pozostaje wyznaczenie całek ze wzorów (15) definiujących współczynniki wpływu. Sposób efektywnego wyznaczenia tych całek pokazują prace [6] i [7].

Rozwiązanie układu (14) daje rozkład potencjału na powierzchni opływanej bryły. Aby otrzymać rozkład ciśnienia, potrzebny do wyznaczenia globalnych charakterystyk, należy wyznaczyć rozkład prędkości opływu różniczkując potencjał prędkości względem przyjętych współrzędnych. Następnie korzystając z twierdzenia Bernoullego można obliczyć ciśnienie. Różniczkowanie numeryczne potencjału jest jednak w ogólnym przypadku dosyć kłopotliwe i może być źródłem wielu błędów, zwłaszcza w miejscach dużej nieregularności siatki, np. na załamaniach krawędzi natarcia.

Obciążenia aerodynamiczne wyznaczamy zgodnie z następującymi zależnościami:

- siłę nośną

$$\mathbf{P}_{\mathbf{Z}} = -\sum_{i=1}^{N} \mathbf{p}_{i} \mathbf{S}_{i} \boldsymbol{n}_{i} \cdot \boldsymbol{z}$$
(19)

- siłę oporu

$$\mathbf{P}_{\mathbf{X}} = -\sum_{i=1}^{N} \mathbf{p}_{i} \mathbf{S}_{i} \boldsymbol{n}_{i} \cdot \boldsymbol{x}$$
(20)

- moment pochylający

$$\mathbf{M}_{\mathbf{y}} = \sum_{i=1}^{N} p_{i} \mathbf{S}_{i} \mathbf{x}_{i} \mathbf{n}_{i} \cdot \mathbf{z} + \sum_{i=1}^{N} p_{i} \mathbf{S}_{i} \mathbf{z}_{i} \mathbf{n}_{i} \cdot \mathbf{x}$$
(21)

Podobnie można wyznaczyć składowe boczne obciążenia (P_y, M_x, M_z) definiując odpowiednio boczne składowe opływu. Należy przy tym zaznaczyć, że siła oporu otrzymana ze wzoru (20) może mieć znaczenie tylko porządkujące obliczenia. Metody potencjalne nie dają wprost wiarygodnych wartości oporu aerodynamicznego. Pakiet *PANUKL 2002* wyznacza więc współczynnik oporu indukowanego metodą *Trefza*.

1.2. Skrócony opis pakietu PANUKL – główne podprogramy i ich funkcjonalności

Pakiet PANUKL 2002, służący do obliczeń aerodynamicznych samolotu metodą panelową niskiego rzędu, składa się zasadniczo z trzech grup programów. Pierwsza to programy do przygotowania danych, druga to programy przetwarzające dane i wykonujące obliczenia, natomiast trzecią grupę stanowi program zarządzający, będący jednocześnie interfejsem graficznym pozwalającym na oglądanie generowanej siatki, sprawdzanie poprawności wyznaczenia sąsiadów prezentację rozkładu ciśnień itp.

Pakiet został przygotowany do pracy pod nadzorem dwóch systemów operacyjnych:

- MS Windows (2000/XP/Vista na innych wersjach MS Windows nie był testowany),
- Linux (dodatkowe informacje dotyczące wymagań są dostępne z wersją instalacyjną).

W obydwu przypadkach wymagane są biblioteki OpenGL.

1.2.1. Program zarządzający – GRIDVIEW

Program **GRIDVIEW**

Wszystkie programy pakietu *PANUKL 2002* można uruchamiać z programu zarządzającego **GRIDVIEW**, będącego zarazem przeglądarką generowanych siatek i wyników obliczeń (opis w rozdziale 3.1). Kolejne etapy są dostępne z menu głównego programu, w opcji **CREATE**. Pozycje tej opcji pozwalają na wywołanie pozostałych programów pakietu, z wykorzystaniem okienek dialogowych. Programy te jednak mogą być wywoływane oddzielnie z wiersza poleceń. Ich parametrami są pliki konfiguracyjne omówione poniżej. Kolejność wywołania poszczególnych programów powinna być następująca:

1. MESH - generator siatki (wywołanie: Mesh.exe nazwa.ms2),

- 2. NEIGH program wyznaczający ślad wirowy i sąsiadów paneli (Neigh.exe nazwa.ngh),
- 3. PANUKL program wyznaczający rozkład potencjału prędkości (Panukl.exe nazwa.par),
- 4. PRESS program obliczający rozkład ciśnienia i inne wyniki (Press.exe nazwa.prs).

1.2.2. Program przygotowujący dane MESH

Program **MESH**

Program **MESH** służy do tworzenia siatki czworokątnych paneli opisującej geometrię samolotu. Przyjęte jest założenie, że samolot jest symetryczny. Do stworzenia siatki należy przygotować następujące zbiory danych:

- zbiór główny [nazwa.**MS2**] zawierający ogólne informacje o obiekcie, definicje płatów, kadłuba i łączników,
- zbiory z definicjami profili [nazwa.PRF],
- zbiór definiujący geometrię kadłuba [nazwa.F].

Szczegółowy opis plików danych wraz z przykładami znajduje się w rozdziale 1.3.1.

1.2.3. Programy do obliczeń właściwych NEIGH, PANUKL i PRESS

Do tej grupy należą 3 programy: **NEIGH, PANUKL** i **PRESS**. Program **NEIGH** służy do wstępnego przetworzenia danych i wyznaczenia numerów paneli sąsiadujących. Program **PANUKL** oblicza współczynniki wpływu i rozwiązuje układ równań dając w wyniku rozkład potencjału prędkości. Moduł ten ma największe wymagania sprzętowe, gdyż wymaga pamięci rzędu 4xN² bajtów, gdzie N jest liczbą paneli. Czas działania tego modułu może być również znaczny i zależy w przybliżeniu od trzeciej potęgi liczby paneli. Trzecim i ostatnim programem tej grupy jest moduł *Press*, który oblicza rozkład ciśnienia, wyznacza współczynniki aerodynamiczne sił i momentów sił a ponadto może wyznaczyć rozkład prędkości i kąta odchylenia strug w zadanej płaszczyźnie oraz współczynnik oporu indukowanego liczony w tzw. płaszczyźnie *Trefza*.

Program **NEIGH**

Program **NEIGH** służy do wyznaczenia numerów sąsiadów poszczególnych paneli. Ponadto rozszerza siatkę obiektu o ślad wirowy. Zbiorami wejściowymi jest zbiór z geometrią siatki oraz zbiór z parametrami generowanego śladu oraz identyfikacji sąsiadów. Zbiór z parametrami generacji ma rozszerzenie [*nazwa*.**NGH**].

Nr rekordu	Nazwa	Opis
1	IWAKE	 Zmienna typu INTEGER sterująca sposobem generacji śladu: o - ślad jest ciągnięty równolegle do osi X globalnego układu współrzędnych, 1 - pasma śladu są odchylone w płaszczyźnie XOZ o kąt ALFA od kierunku OX, 2 - pasma śladu są odchylone w płaszczyźnie XOY o kąt BETA od kierunku OX,

Zbiór [nazwa.NGH] zawiera 8 rekordów:

		3 - sumowanie efektów dla IWAKE=1 i IWAKE=2,
		4 - tak jak dla IWAKE=1 ale tylko dla ostatnich paneli śladu,
		5 - tak jak dla IWAKE=2 ale tylko dla ostatnich paneli śladu,
		6 - tak jak dla IWAKE=3 ale tylko dla ostatnich paneli śladu.
		Uwaga: Dla IWAKE=4,5,6 wszystkie panele oprócz ostatnich
		w paśmie, są generowane tak jak dla IWAKE=0.
		Zmienna typu REAL - kąt ostrza. Jeżeli kąt między panelami na
2	KAT_OST	krawędzi spływu jest mniejszy lub równy zdefiniowanemu w tej
		zmiennej, to z takiej krawędzi będzie poprowadzone pasmo śladu.
		Zmienna typu REAL - kąt warunkujący zerowanie sąsiadów. Jeżeli kąt
3	WAR_KAT	między dwoma sąsiadującymi panelami będzie większy od
		WAR_KAT, to panele te nie będą traktowane jako sąsiadujące.
Л	ALFA	Kąt natarcia (do generacji śladu) mierzony jako kąt między
		kierunkiem osi 0X a kierunkiem prędkości niezaburzonej, [deg].
5	BETA	Kąt bocznego opływu (do generacji śladu), [deg] .
6	DDUUC	Długość ostatnich w paśmie paneli śladu mierzona jako
O	DDLUG	krotność SCA .
7	NINP	Tekst (max 12 znaków) - nazwa zbioru z geometrią siatki.
8	NDAT	Tekst (max 12 znaków) - nazwa zbioru wynikowego.

Zbiór z geometrią siatki [nazwa.INP] ma następującą postać:

Nr rekordu	Nazwa	Opis (1 zmienna INTEGER 6 typu REAL)
	N	Liczba paneli.
	S	Powierzchnia nośna (odniesienia).
1	SCA	Średnia cięciwa aerodynamiczna.
1	В	Rozpiętość płata.
	XCA25 ZCA25	Współrzędne 1/4SCA w układzie globalnym.
	WSP_SK	Współczynnik skali w jakiej wygenerowana jest siatka.

Nr rekordu	Nazwa	Opis (1 zmienna INTEGER 12 typu REAL)
	I	Numer panelu.
	X1,Y1,Z1	Współrzędne 1 naroża panelu.
2-N+1	X1,Y1,Z1	Współrzędne 2 naroża panelu.
	X1,Y1,Z1	Współrzędne 3 naroża panelu.
	X1,Y1,Z1	Współrzędne 4 naroża panelu.
	Uwaga: k	olejność naroży panelu jest zgodna z kierunkiem wskazówek zegara.

Nr rekordu	Nazwa	Opis (1 zmienna INTEGER)
N+2	N_ELEM	Liczba elementów samolotu (np. płat, usterzenie poziome itp.), z których spływający ślad powinien być "przyklejony" krawędziami bocznymi do paneli innego elementu (np. panele śladu spływającego ze skrzydła, w paśmie przy kadłubie powinny być przyklejone do odpowiednich paneli kadłuba.

Następne rekordy tworzą **N_ELEM** następujących sekwencji dla wszystkich **elementów**:

Nr rekordu	Nazwa	Opis (3 zmienn3 INTEGER)
1	N_BOCZ	Liczba paneli sąsiadujących ze śladem wzdłuż bocznych krawędzi. Uwaga : zliczanie paneli zaczynamy od paneli, która pierwsza ma naroże wspólne z narożem panelu śladu.
	N1, N2	Numer początkowy i końcowy danego elementu samolotu.

Nr rekordu	Nazwa	Opis (1 zmienna INTEGER 3 typu REAL)
N_BOCZ	X, Y, Z	Współrzędne naroży panelu sąsiadujących ze śladem (duże niebieskie kropki na Rys. 4).
	IBOCZ	Numer tego panelu (na Rys. 4 zaznaczony jako: I, II, III itp.).

Rys. 4 – Panele kadłuba sąsiadujące ze śladem spływającym z krawędzi spływu płata (gruba linia)

Zbiorem wyjściowym jest zbiór z geometrią siatki (przeskalowaną przez współczynnik **WSP_SK**) i śladem [*nazwa*.**DAT**], który ma następującą postać:

Nr rekordu	Nazwa	Opis (3 zmienne INTEGER 5 typu REAL)
	N	Liczba paneli.
	NPAS	Liczba pasm śladu.
	NWAKE	Liczba paneli śladu.
1	S	Powierzchnia nośna (odniesienia).
	SCA	Średnia cięciwa aerodynamiczna.
	В	Rozpiętość płata.
	XCA25 ZCA25	Współrzędne 1/4SCA w układzie globalnym.

Nr rekordu	Nazwa	Opis (1 zmienna INTEGER 12 typu REAL)
	I	Numer panelu.
	X1,Y1,Z1	Współrzędne 1 naroża panelu.
2-N+1	X1,Y1,Z1	Współrzędne 2 naroża panelu.
	X1,Y1,Z1	Współrzędne 3 naroża panelu.
	X1,Y1,Z1	Współrzędne 4 naroża panelu.
	Uwaga: k	olejność naroży panelu jest zgodna z kierunkiem wskazówek zegara.

Nr rekordu	Nazwa	Opis (1 zmienna INTEGER)
N+2	NWAKE	Liczba paneli śladu (powtórzenie z Rekordu 1.).

Nr rekordu	Nazwa Opis (1 zmienna INTEGER 12 typu REAL)			
N+3-N+3+NWAKE	I	Numer panelu.		
	X1,Y1,Z1	Współrzędne 1 naroża panelu.		
	X1,Y1,Z1	Współrzędne 2 naroża panelu.		
	X1,Y1,Z1	Współrzędne 3 naroża panelu.		
	X1,Y1,Z1	Współrzędne 4 naroża panelu.		
	Uwaga: kolejność naroży panelu jest zgodna z kierunkiem			
	wskazówek zegara przy widoku paneli śladu z góry.			

Nr rekordu	Nazwa	Opis (9 zmiennych INTEGER)
N	I	Numer danego panelu.
	J1-J8	Numery paneli sąsiadujących wg schematu na Rys. 5

Nr rekordu	Nazwa	Opis (zmienne INTEGER)
	l I	Numer pasma śladu.
	NG	Numer panelu "górnego" na krawędzi spływu, z którego "spływa" I-te pasmo.
NPAS	NK	Numer krawędzi (parzysta) NG-tego panelu graniczącej ze śladem (krawędź 2 to krawędź łącząca naroża 1 i 2, krawędź 4 to krawędź łącząca naroża 2 i 3 itd.).
	IPAS	Ilość paneli w I-tym paśmie.
	N ₁ -N _{IPAS}	Numery kolejnych paneli w I-tym paśmie śladu.
	N _{IPAS+1}	Liczba 100000 oznaczająca koniec pasma.

Rys. 5 – Numeracja sąsiadów I-tego panelu

Program **PANUKL**

Program **PANUKL** oblicza współczynniki wpływu brakujące wielkości geometryczne i rozwiązuje układ równań w wyniku, którego otrzymujemy rozkład potencjału. Parametry takie jak kąt natarcia kąt bocznego opływu prędkości kątowe itp. są czytane ze zbioru [*nazwa*.**PAR**]. Wyniki są zapisywane na zbiór o rozszerzeniu [*nazwa*.**PAN**] i stanowi on dane dla programu **PRESS**. Zbiór ten jest zbiorem typu **ASCII** zapisanym tzw. formatem swobodnym.

Nr rekordu	Nazwa	Opis
1	NDAT	Tekst (max 12 znaków) - nazwa zbioru danych (wynik programu NEIGH).
2	NPANTekst (max 12 znaków) - nazwa zbioru wynikowego (zbiór ten powinien mieć rozszerzenie [nazwa.PAN]).	
3	ALFA	Kąt natarcia mierzony jako kąt między kierunkiem osi OX a kierunkiem prędkości niezaburzonej [deg] .
4	BETA	Kąt bocznego opływu [deg] .
5	Р	Prędkość kątowa przechylania [rad/s].
6	Q	Prędkość kątowa pochylania [rad/s] .
7	R	Prędkość kątowa odchylania [rad/s] .
8	IPROC	Procedura rozwiązująca układ równań (1-optymalizowana procedura z pakietu LAPACK, 2-procedura nieoptymalizowana - dokładniejsza).

Zbiór [nazwa.PAR] ma 8 rekordów:

Program **PRESS**

Program **PRESS** oblicza rozkład ciśnienia na bryle samolotu poprzez różniczkowanie numeryczne rozkładu potencjału prędkości. Ponadto wyznacza współczynniki aerodynamiczne sił i momentów sił. Program może ponadto wyznaczyć rozkład kąta odchylenia strug za samolotem w dowolnym prostokątnym obszarze dowolnej płaszczyzny **YOZ** oraz może obliczyć współczynnik oporu indukowanego liczonego w płaszczyźnie *Trefza*. Parametry i opcje programu są czytane ze zbioru o rozszerzeniu [*nazwa*.**PRS**]. Wyniki obliczeń są zapisywane na trzy zbiory o tej samej nazwie własnej co zbiór o rozszerzeniu [*nazwa*.**PAN**] (wynik działania programu **PANUKL**) stanowiący dane dla programu **PRESS**. Zbiory wynikowe zawierają:

- [nazwa.OUT] wyniki obliczeń całkowitych współczynników aerodynamicznych,
- [nazwa.CZY] wyniki obliczeń dotyczące rozkładu obciążeń wzdłuż rozpiętości płata, (Y, Cz, Cm, Cxi, Si, Ci),
 [nazwa TYT] wyniki obliczeń okładowych prodkości osobliwaści ciśnień wynótrzedowch
- [nazwa.TXT] wyniki obliczeń składowych prędkości, osobliwości, ciśnień, współrzędnych punktów kolokacji itp. dla poszczególnych paneli (zbiór łatwy do użycia w większości pakietów graficznych),
- [nazwa.EPS] wyniki obliczeń kąta odchylenia strug (zbiór tworzony opcjonalnie),
- [nazwa.BLN] obrys przekroju elementów samolotu, które znalazły się w prostokątnym obszarze zdefiniowanym do obliczeń kąta odchylenia strug (zbiór tworzony opcjonalnie razem ze zbiorem [nazwa.EPS]).

Zbiór [nazwa.PRS] ma następującą postać (11 rekordów):

Nr rekordu	Nazwa	Opis
1	PAN	Tekst (max 8 znaków) - nazwa własna zbioru [<i>nazwa</i> . PAN] z wynikami PANUKLA ,
2	IEPS	 Zmienna typu INTEGER sterująca obliczaniem kąta odchylenia strug: 0 - nie liczy kąta odchylenia strug, 1 - liczy kąt odchylenia strug w płaszczyźnie OYZ, 2 - liczy kąt odchylenia strug w płaszczyźnie OXZ.
3	IIND	Zmienna typu INTEGER sterująca obliczeniem oporu w płaszczyźnie <i>Trefza</i> : 0 - nie liczy, 1 - liczy.
4	NY_EPS NZ_EPS	Dwie zmienne typu INTEGER oznaczające liczbę punktów wzdłuż osi Y i osi Z w których będzie obliczony kąt odchylenia strug.
5	X_EPS	Zmienna typu REAL oznaczająca położenie (współrzędną X) płaszczyzny, w której będzie liczony kąt odchylenia strug, dla IEPS=2 będzie to współrzędna Y_EPS oznaczająca współrzędną Y płaszczyzny OXZ w której liczony będzie kąt odchylenia strug.
6	Y1_EPS Y2_EPS	Dwie zmienne typu REAL oznaczające początkową i końcową wartość współrzędnej Y (lub X1_EPS i X2_EPS oznaczające początkową i końcową wartość współrzędnej X dla IEPS=2) , ograniczające prostokątny obszar w którym będzie liczony kąt odchylenia strug.
7	Z1_EPS Z2_EPS	Dwie zmienne typu REAL oznaczające początkową i końcową wartość współrzędnej Z , ograniczające prostokątny obszar w którym będzie liczony kąt odchylenia strug.
8	NUM1 NUM2	Dwie zmienne typu INTEGER oznaczające numery paneli, pierwszy i ostatni, które będą uwzględnione przy obliczeniu globalnych współczynników aerodynamicznych.
9	IMETH	Zmienna typu INTEGER sterująca metodą różniczkowania rozkładu potencjału. Są stosowane 4 podstawowe metody i ich średnie. Podstawowe metody polegają na wyznaczeniu wielomianu na podstawie znanych wartości potencjału na danym panelu i jego 8 sąsiadach (Rys. 2). Wielomian jest wyznaczany metodą kolokacji lub aproksymacji: 0 - średnia z dwóch, spośród czterech niżej wymienionych, dających najbardziej zbliżone wyniki, 1 - metoda kolokacji - wielomian postaci: $\phi(x,y) = Ax^2y^2 + Bx^2y + Cxy^2 + Dxy + Ex^2 + Fy^2 + Gx + Hy + I$ 2 - metoda kolokacji (z pominięciem punktu na danym panelu) wielomian postaci: $\phi(x,y) = Bx^2y + Cxy^2 + Dxy + Ex^2 + Fy^2 + Gx + Hy + I$ 3 - aproksymacja wielomianem postaci: $\phi(x,y) = Bx^2y + Cxy^2 + Dxy + Ex^2 + Fy^2 + Gx + Hy + I$ 4 - aproksymacja wielomianem postaci: $\phi(x,y) = Dxy + Ex^2 + Fy^2 + Gx + Hy + I$

		5-8 - średnia z 2 spośród 3 metod, po odrzuceniu wyniku najbardziej odbiegającego od dwóch pozostałych:
		5 - metody 1, 2 i 3,
		6 - metody 1, 2 i 4,
		7 - metody 1, 3 i 4,
		8 - metody 2, 3, i 4.
10	IKAT	Zmienna typu INTEGER sterująca różniczkowaniem potencjału. W przypadku numerycznego różniczkowania mogą pojawić się przypadkowe błędy, ze względu na wyjątkowo niekorzystne (z punktu widzenia obliczeń numerycznych) położenie lokalnego (związanego z panelem) układu współrzędnych. Program umożliwia obrót tego układu o \pm 120° i uśrednienie wyników, podobnie jak dla IMETH = 5-8. 0 - obliczenia będą wykonane dla jednego położenia układu
		lokalnego, 1 - obliczenia będą wykonane dla 3 położeń układu (0°, 120°, 240°) i uśrednione po odrzuceniu wartości skrajnej.
11	X1 X2	Dwie zmienne typu REAL oznaczające początkową i końcową wartość współrzędnej X dla przedziału który będzie uwzględniony przy wyznaczaniu współczynników globalnych.

1.3. Pliki danych

1.3.1. Opis plików danych opisujących geometrię analizowanego obiektu

Plik [nazwa.prf] – zbiór danych opisujących profil skrzydła

# -	znak rozpoczynajacy	komentarz do	zawartości p	liku (nie i	est niezbedny)
	znan rozpoczynający	nonnentare ao	Latta tobbi p	inter (inte j	cot meroquing,

		PRZYKŁA	DOWA DEFINICJA PLIKU			
24 #n - liczba punktów	24 #n - liczba punktów opisujących dany profil (zarówno dolną jak i górną krzywiznę profilu), Rys. 6					
#górna krzy	wizna profilu	#dolna krzyv	vizna profilu			
#współrzędna X	#współrzędna Y	#współrzędna X	#współrzędna Y			
0.000	0.000	0.000	0.000			
0.006	0.093	0.006	-0.093			
0.622	0.905	0.622	-0.905			
2.233	1.655	2.233	-1.655			
4.806	2.330	4.806	-2.330			
8.290	2.911	8.290	-2.911			
12.615	3.380	12.615	-3.380			
17.693	3.722	17.693	-3.722			
23.422	3.929	23.422	-3.929			
29.687	4.001	29.687	-4.001			
36.361	3.945	36.361	-3.945			
43.311	3.776	43.311	-3.776			

Rys. 6 – Definicja zbioru *.prf opisującego geometrię danego profilu skrzydła

Plik [nazwa.f] – zbiór danych opisujących geometrię kadłuba

# _	znak	rozpoczy	maiary	komentarz	do .	zawartości i	aliku	(nia i	ioct.	niozho	dnv	Λ
Π -	ZHAK	TUZPUCZ	Inający	KUITEITTALZ	uu i	Lawartusti	JIIKU	(ine j	Col	IIICZDĘ	un	1

ILOSC PUNKTOW NA WREDZI	E 15	
ILOSC WREG 10 #n wręg		
WREGA 0		
#numer punktu na wrędze	#współrzędna Y	#współrzędna Z
0.000	0.000	0.000
WREGA 1		
#numer punktu na wrędze	#współrzędna Y	#współrzędna Z
-3.3	0.000	-0.400
-3.3	0.100	-0.390
-3.3	0.200	-0.350
-3.3	0.280	-0.280
-3.3	0.350	-0.200
-3.3	0.390	-0.100
-3.3	0.400	0.000
-3.3	0.400	0.000
-3.3	0.400	0.000
-3.3	0.390	0.100
-3.3	0.350	0.200
-3.3	0.280	0.280
-3.3	0.200	0.350
-3.3	0.100	0.390
-3.3	0.000	0.400
WREGA 2		
#numer punktu na wrędze	#współrzędna Y	#współrzędna Z
-2.3	0.000	-0.610
-2.3	0.160	-0.590
-2.3	0.300	-0.530
-2.3	0.430	-0.430
WREGA 9 #(n-1) – numer ost	atniej wręgi	
#numer punktu na wrędze	#współrzędna Y	#współrzędna Z
1.3	0.000	0.000

PRZYKŁADOWA DEFINICJA PLIKU

Kolorem żółtym zaznaczono 3 podłużnice (patrz Rys. 7), których współrzędne są identyczne poza obszarem gdzie skrzydło (lub usterzenie przenika kadłub).

Rys. 7 – Sposób opisu geometrii kadłuba

UWAGI:

- Zbiór z definicją geometrii kadłuba , zawiera współrzędne punktów opisujących współrzędne połowy przekrojów kadłuba samolotu.
- Dana podłużnica, która trafia w punkt skrajny na nosku profilu definiującym skrzydło (lub usterzenie poziome), rozdziela się na dwie dodatkowe podłużnice (które "omijają" skrzydło). Te dwie dodatkowe podłużnice są zdefiniowane w pliku i są wliczane do liczby wszystkich podłużnic kadłuba.
- Numeracja punktów opisujących wręgi oraz podłużnice kadłuba nie jest taka sama, Rys. 7
- Pierwsza i ostatnia wręga kadłuba sprowadzona jest do punktu.
- Współrzędna Y dla punktów definiujących kadłub nie może być ujemna.
- Współrzędna Y dla ostatniego i końcowego punktu danej wręgi musi być taka sama.

Plik [nazwa.ms2] – zbiór danych opisujących samolot

- znak rozpoczynający komentarz do zawartości pliku (nie jest niezbędny)

PRZYKŁADOWA DEFINICJA PLIKU

# SEKCJA OGÓLN	NA		
begin	#	słowo kluczowe	
26.6	#	powierzchnia nośna (REAL) dane samolotu dane samolotu (mo	vgą
1.91	#	średnia cięciwa aerodynamiczna (REAL) być pominięte, sa	1
8.56	#	rozpiętość (REAL)	ne
6.43	#	współrzędna x punktu 0.25 SCA (REAL)	dzi
0.00	#	współrzędna z punktu 0.25 SCA (REAL) gdy profil sekcji nr	1
1	#	współczynnik skali (INTEGER) płata, nie leży	
****	#	znak rozdzielający: 5 gwiazdek w osi symetrii)	
test 01	#	nazwa zbioru wyników, dodane będzie rozszerzenie " *.inp "	
2	#	liczba płatów niezależnych, tzn. takich które mają podany podzia	ł
		wzdłuż cieciwy i w przypadku przenikania z kadłubem	
		narzucaja ten podział (np: kadłub przejmuje podział od płata)	
1	#	liczba płatów zależnych, bez określonego podziału wzdłuż cieciw	v
_		płaty te są dzielone zgodnie z podziałem elementów	,
		z którymi się stykają (np. płąt przeimuje podział od kadłuba)	
0	#	flaga dotyczącą symetrii badanego samolotu "O lub brak flagi" –	- obiekt
-		symetryczny. "1" – prąwa połówka. "-1" – lewa połówka obiektu	I.
		hedzie hrana do obliczeń.	,
end	Ħ	sława kluczawe	
# SEKCIA PŁATÓ	w.	$- P AT \Omega''$	
begin wing0	#	noczątek sekcji płata $0^{"}$ - płat ałówny	
1	#	zamkniecie płata żehrem zewnetrznym (INTEGER)	
-	"	0 – otwarte	
		1 - zamkniete	
		2 – zamkniete obustronnie	
1	Ħ	nrzenikanie płata z kadłubem (INTEGER)	
-	п	1 = tak (zehro 0 '' - wewnatrz kadłuba żehro 1 '' - na zewnatrz)	
		$\mathbf{n} = nie (kadłub jest doklejany do żebra \mathbf{n}^{"}; żebro znajduje się na$	
		o – nie (kuulub jest uokiejuny uo zebru "o , zebro znujuuje się nu zownatrz kadłuba)	
7	#	numer nodłużnicy kadłuba do którni przyczaniony" jest nosek pł	ata
·	#	(numer zaodny z danymi w zbiorze z definicia acometrii kadłub E	$\lambda (\alpha - 7)$
2	#	(numer zgouny z dunymi w zbiorze z dejinicjų geometrii kuulub, k	iys. 77
3	#	nost sekcji dejiniujących geometnę piata (in redek)	
paceE006 prf	#	politizej przedstawiono ich opis.	``
5 20	# #	ρισμί τερία αια αατιεί sekcji (παζίνα τριστά αατιγκτι) cieciwa (ΡΕΛΙ)	
5.20 6.27 1.00 1.01	# #	uçuwu (NEAL) współrzadna poska żabra(DEAL)	
0.27 1.09 1.01	#	wspull Zeulle Husku zeulu(KEAL)	, > sekc
0.00 1.00 0.00	Ħ Д	kųty obrotu zebru w przestrzeni wzgiędem osi X, Y, Z [deg] (KEAL)	'
U	Ħ	numer przekroju (INTEGER)	J
		(numer przekroju bieżącej sekcji – Inumer przekroju	
		z poprzedniej sekcji + 1] = ilość żeber dostawionych	
		automatycznie pomiędzy to i poprzednie żebro	
		definiujące (słuszne gdy numer przekroju	21
		poprzedniej sekcji>2) Rys. 8	

nac65006.prf	
4.09	
8.96 2.21 0.94	> sekcja - 2
0.00 0.00 0.00	
1	
nac65004.prf	X
1.60	
13.90 4.31 0.73	
	> sekcja - 3
8	
00512525575	10 15 20 30 40 50 60 74 90 100
""""""""""""""""""""""""""""""""""""""	nodziały płata wzdłuż cieciwy [%CA] podział płata może być dokonany
π	automatycznia liniowo lub cosinysoidalnia, możliwa oncia nn:
	linear 15 – podział równomiarny na 15 odcinków
	ninear 15 - pouziur rownormerny nu 15 Ouchikow
and when the	cosine 15 – podział cosinasoladniy na 15 odcinków
ena_wing #	KOMEL SEKCJI PIALA "U - PIAT GIOWNY
# SEKCJA PLATOW	
begin_wing1 #	początek sekcji płata " 1 " – w tym przypadku statecznik poziomy – opis
1	analogiczny jak dla płata głównego
1	
•••	
end_wing #	koniec sekcji płata " 1 " – statecznik poziomy
# SEKCJA PŁATÓW ·	– PŁAT "2"
begin_wing2 #	początek sekcji płata " 2 " – w tym przypadku pojedynczy
	statecznik pionowy – opis analogiczny jak dla płata głównego
1	
0 #	przenikanie płata z kadłubem (INTEGER) <mark>0</mark> – kadłub jest doklejany do
	żebra " 0 ", żebro znajduje się na zewnątrz kadłuba)
16	
3	
nac65006.prf	
5.00	
10.58 0.00 1.52	
90.00 0.00 0.00	
1	
nac65006.prf	
3.54	
12.57 0.00 2.25	
90.00 0.00 0.00	
3	
- nac65004.prf	
1 93	
15 69 0 00 4 35	
7	
unknown #	nieznany jest podział płata wzdłuż cieciwy
	(hedzie wstaleny gutematucznie)
	(bęuzie ustaiony automatycznie)

bottom	#	słowo " bottom " lub " top " oznacza ,że płat posiada tylko dolną lub
		aórna powierzchnie (dotyczy ałownie symetrycznych płatów na osi
		symetrii samolotu) - jeao druga połowa powstanie
		iako lustrzane odbicie
end wing	#	koniec sekcii płata " 2 " – statecznik pionowy
# SEKCJA PŁATÓ	W	– PŁAT "3"
begin wing3	#	początek sekcji płata " 3 " – w tym przypadku płyta brzegowa – opis
2		analogiczny jak dla płata głównego
0		5 , , , , 5 5
0		
3		
end_wing	#	koniec sekcji płata " 3 " – płyta brzegowa
# SEKCJA KADŁU	JBA	
begin_fuselage	#	początek sekcji kadłuba
1	#	1 – kadłub istnieje,
		0 – nie istnieje (jeśli nie istnieje, pozostałe dane mogą być pominięte)
test_01.f	#	nazwa zbioru z danymi kadłuba
7	#	ilość dodatkowych wręg (dostawianych automatycznie
9.9 10.5 11.3 11	.6 1	1.9 12.3 12.6 # położenie wzdłuż osi X dodatkowych wręg
end_fuselage	#	koniec sekcji kadłuba
# SEKCJA POŁĄC	ZEI	Ň
begin_connection	ons	# początek sekcji połączeń poziomych
1	#	liczba połączeń (jeśli 0 pozostałe wiersze mogą być pominięte)
21000151	#	statecznik pionowy (płat-2) z poziomym (płat-1), opis wartości:
		2 – nr płata - statecznik pionowy (begin_wing 2)
		1 – nr płata - statecznik poziomy (begin_wing 1)
		 nr żebra statecznika pionowego połączonego z statecznikiem
		poziomym: 0 – pierwsze, 1 - ostatnie
		 nr żebra statecznika poziomego połączonego z statecznikiem
		pionowym: 0 – pierwsze, 1 – ostatnie
		0 – nr podłużnicy statecznika poziomego połączonej z noskiem
		statecznika pionowego
		15 – nr podłużnicy statecznika poziomego połączonej ze spływem
		statecznika pionowego
		1 – powierzchnia usterzenie poziomego, która ulegnie modyfikacji:
	ш	U – powierzchnia doina, 1 – powierzchnia gorna
ena kasin anatir	Ħ	koniec sekcji połączen poziomych
begin_connectio	ons _.	V # początek sekcji połączen pionowych
1	#	liczba połączen pionowych, np: płyta brzegowa + skrzyało dl: O napostala wienaca mogać kościeniata)
00100101	(Je	esii U pozostałe wiersze mogą być pominięte)
03130161	Ħ	plat plonowy z pozlomym, opis wartości:
		0 – nr práta poziomego
		5 – rir piulu pionowego
		 I – nr zebru plata poziomego połączonego z platem plonowym: D pierwsze 1. ostatnie
		$\mathbf{U} = \mu i e i w s z e$, $\mathbf{I} = 0 s i a i i e e e e e e e e e e e e e e e e$
		5 – III zebra plata plonowego połączonego z platem poziomym

	0 – nr podłużnicy płata pionowego połączonej z noskiem
	płata poziomego
	16 – nr podłużnicy płata pionowego połączonej ze spływem
	płata poziomego
	1 – powierzchnia płata pionowego, która ulegnie modyfikacji:
	0 – powierzchnia zewnętrzna, 1 – powierzchnia wewnętrzna
end	# koniec sekcji połączeń pionowych

Rys. 8 – Sposób tworzenia płata "niezależnego" (zgodny z definicją płata-0 podaną jako przykład powyżej)

1.3.2. Krótki opis plików wynikowych

Plik [nazwa.OUT]

Wyniki obliczeń całkowitych współczynników aerodynamicznych:

- znak rozpoczynający komentarz do zawartości pliku (nie jest niezbędny)

PRZYKŁADOWA STRUKTURA PLIKU WYNIKOWEGO

```
Data from file:
C:/Users/Lucas/Panukl/dat/panukl/predator.pan # ścieżka dostępu do pliku
Geometry data: # geometria odniesienia
S = 10.00
MAC = 0.74
B = 14.70
Coordinates of reference point for moments calculation: # punkt redukcji momentów
X = 3.31 Y = 0.00
Angle of attack, sideslip angle and Mach number: # kgt natarcia, kgt slizgu, liczba Macha
Alfa = 5.0
Beta = 0.0
Mach = 0.0
angular velocities: # prędkości kątowe
P = 0.0
Q = 0.0
R = 0.0
Global results : # globalne wyniki dla analizowanego obiektu
in body axis system: # globalne wyniki w układzie samolotowym
Cx = -0.0488533498
Cy = -0.000400980979
Cz = 0.757529054
Cl = 0.000270848351
Cm = -0.303237661
Cn = 0.000253265641
in stability axis system: # globalne wyniki w układzie związanym z ¼ SCA
Cz = 0.758904277
Cx = 0.0173555587
Induced drag and corresponding lift coefficient: # opór indukowany oraz odpowiadajacy
współczynnik siły nośnej
Cxi= 0.00832755596
Czi= 0.722843174
```

Plik [nazwa.TXT]

Wyniki obliczeń składowych prędkości, osobliwości, ciśnień, współrzędnych punktów kolokacji itp. dla poszczególnych paneli (zbiór łatwy do użycia w większości pakietów graficznych):

Rys. 9 – Przykładowy rozkład współczynnika ciśnienia dla badanego obiektu. Dane zapisane w pliku *.TXT

Plik [nazwa.EPS]

Wyniki obliczeń kąta odchylenia strug (zbiór tworzony opcjonalnie, patrz rozdział 3.1.4):

Rys. 10 – Przykładowe wyniki obrazujące kąt odchylenia strug za badanym obiektem (wykres zrobiono na podstawie pliku *.EPS w programie MS EXCEL)

Plik [nazwa.BLN oraz nazwa.EPS]

Rys. 11 – Kąt odchylenia strug w okolicy usterzenia poziomego (przykładowy wykres zrobiony w oparciu o pliki: *.BLN oraz *.EPS w programie GRAPHER)

Rys. 12 – Kąt odchylenia strug w okolicy przekroju płata (przykładowy wykres zrobiony w oparciu o pliki: *.BLN oraz *.EPS w programie MATHLAB)

Plik [nazwa.CZY]

Wyniki obliczeń dotyczące rozkładu obciążeń wzdłuż rozpiętości płata, (Y, Cz, Cm, Cxi, Si, Ci):

Rys. 13 – Przykładowy rozkład obciążenia wzdłuż rozpiętości płata otrzymany na podstawie pliku *.CZY

2. Instalacja programu

Program **PANUKL** został przygotowany dla użytkowników komputerów PC z zainstalowanym systemem operacyjnym firmy **Microsoft – Windows 2000/ Windows XP/ Windows Vista** oraz dla użytkowników komputerów z systemem operacyjnym **Linux**.

W celu zainstalowania programu na komputerze wymagane jest pobranie aktualnej, odpowiedniej dla danego systemu operacyjnego wersji instalacyjnej oprogramowania, którą można znaleźć pod adresem internetowym: <u>http://itlims.meil.pw.edu.pl/zsis/pomoce/PANUKL/panukl.htm</u> zakładka: **Pliki do pobrania**.

2.1. Instalacja w systemie operacyjnym MS WINDOWS

Krok 1) Pobieramy archiwum: **Panukl_Setup.zip** na dysk komputera i rozpakowujemy jego zawartość do dowolnie wybranego folderu.

Krok 2) Uruchamiamy rozpakowany plik instalacyjny programu: **Panukl_Setup.exe** - pojawi się okno instalatora, Rys. 14.

Rys. 14 – Okno powitalne instalatora

Krok 3) Kliknięcie przycisku NEXT spowoduje przejście do kolejnego okna instalatora, Rys. 14 w którym wskazany jest folder na dysku gdzie docelowo zainstalowany będzie program:
 C:\Program Files\Panukl. W przypadku instalacji do innego folderu, należy kliknąć przycisk BROWSE i wskazać docelową lokalizację, gdzie zostanie zainstalowana aplikacja.

W przypadku gdy niezbędne jest przerwanie instalacji należy kliknąć przycisk **CANCEL**. Jeśli natomiast użytkownik chciałby powrócić do poprzedniego okna instalatora należy kliknąć przycisk **BACK**.

etup - Panukl		_
Select Destination Location Where should Panukl be installed?		
Setup will install Panukl into I	he following folder.	
To continue, click Next. If you would l	ike to select a different folde	r, click Browse.
C:\Program Files\PanukI		Browse
At least 5.1 MB of free disk space is re	quired.	
		luty Cours
	Z Deal/	

Rys. 15 – Wybór folderu docelowego instalacji

Krok 4) W kolejnym oknie, Rys. 16 program instalacyjny pozwala użytkownikowi na wybranie dostępnych podprogramów, które w zależności od decyzji użytkownika zostaną lub nie zostaną zainstalowane. Podprogramy: **XFOIL** i **FUSELAGE** nie są wymagane do funkcjonowania pakietu **PANUKL**, jednakże wskazana jest ich instalacja.

etup - Panukl		
elect Components Which components should be inst	alled?	10 m
Select the components you want t install. Click Next when you are rea	o install; clear the components y ady to continue.	ou do not want to
Full installation		•
Program Files		4.4 MB
✓ Xtoil program ✓ Fuselage program		1.2 MB 1.1 MB
Current collection convines at least 1	72 MD of High space	
Current selection requires at least a		

Rys. 16 – Opcje instalacji programu

Krok 5) W następnym oknie instalatora, Rys. 17 użytkownik proszony jest o wpisanie nazwy folderu w którym w pasku **START** systemu **WINDOWS** będzie znajdował się skrót do instalowanych programów. Dodatkowo program instalacyjny zapyta się Rys. 17 czy stworzyć ikony do uruchamiania programu zarządzającego **GridView** pakietu **PANUKL** na **PULPICIE** i na **PASKU SZYBKIEGO URUCHOMIANIA**.

Rys. 17

Krok 6) W przedostatnim oknie instalatora wyświetlane jest podsumowanie Rys. 19 dotyczące wybranych do zainstalowania opcji programu **PANUKL**. W celu potwierdzenia dokonanego wyboru, użytkownik proszony jest o kliknięcie przycisku **INSTALL**. Gdy proces instalacji przebiegnie prawidłowo wyświetlone zostanie okno z podsumowaniem. Koniec instalacji zatwierdzamy klikając przycisk **FINISH** Rys. 19.

Koniec procesu instalacji)

Pierwsze uruchomienie z poziomu użytkownika) Pierwsze uruchomienie programu należy wykonać klikając na ikonę programu zarządzającego **GridView** [3].

Pierwsze uruchomienie powoduje utworzenie w katalogu domowym użytkownika podkatalogu **.panukl**, w którym będą umieszczane pliki **robocze**, plik ***.ini** oraz **logi**. Ponadto użytkownik zostanie zapytany o utworzenie katalogów na pliki danych **/DAT** i wyniki **/OUT**.

W przypadku pominięcia etapu tworzenia podkatalogów (istotnych z punktu widzenia prawidłowego tworzenia plików danych) użytkownik może skorzystać z opcji tworzenia struktury katalogów znajdującej się programie zarządzającym **GridView** [3.1.6].

2.2. Instalacja w systemie operacyjnym LINUX

Krok 1) Pobieramy archiwum: **PanuklLinkux.zip** na dysk komputera i rozpakowujemy jego zawartość do dowolnie wybranego folderu.

Krok 2) Po rozpakowaniu zawartości archiwum: **PanuklLinux.zip**, uruchamiamy skrypt instalacyjny poleceniem: **"sh PanuklSetup.sh"**.

Jeżeli skrypt był uruchamiany z poziomu **użytkownika**, pakiet zainstaluje sie w podkatalogu **PANUKL** katalogu domowego **/home/username/panukl**. Ponadto zostanie utworzona ikona na pulpicie ze skrótem do programu zarzadzajcego **GridView** - pakiet jest gotowy do użycia.

Jeżeli skrypt by uruchamiany z poziomu **root**, pakiet zainstaluje sie w katalogu **/usr/local/panukl** zostanie utworzony link symboliczny w katalogu **/usr/local/bin** o nazwie **panukl** do programu zarzadzajcego.

Koniec procesu instalacji)

Pierwsze uruchomienie z poziomu użytkownika) Pierwsze uruchomienie programu należy wykonać z okienka terminala poleceniem **panukl** – w efekcie utworzona zostanie ikona na pulpicie i uruchomiony zostanie program.

Pierwsze uruchomienie w obydwu przypadkach powoduje utworzenie w katalogu domowym podkatalogu **.panukl** , w którym będą umieszczane pliki **robocze**, plik ***.ini** oraz **logi**. Ponadto użytkownik zostanie zapytany o utworzenie katalogów na pliki danych **/DAT** i wyniki **/OUT**.

Wymagania) GLIBC ≥ 2.3, libXft.so.2, libXext.so.6, oprócz tego program XFOIL wymaga dodatkowo bibliotek programu Fortran 77. W nowszych wersjach LINUXA może zaistnieć potrzeba doinstalowania pakietu compat-libf2c. Uruchamianie programu XFOIL spod GridView wymaga dodatkowo programu xterm.

3. Rozpoczęcie pracy w systemie PANUKL

3.1. Opis Interfejsu graficznego, wraz z opisem dostępnych opcji oraz oferowanych możliwości

W celu uruchomienia interfejsu graficznego programu

PANUKL, klikamy na ikonkę sposobu instalacji może

aplikacji zarządzającej **GridView.exe**, która w zależności od sposobu instalacji może znajdować się na **PULPICIE** lub wybieramy ją z folderu do, którego zainstalowany został program. Po krótkiej chwili pojawi się główne okno interfejsu graficznego Rys. 21. Pakiet **PANUKL** jest w pełni gotowy do pracy.

Rys. 21 – Główne okno interfejsu graficznego aplikacji

Rozmiar okna możemy zmieniać przy pomocy standardowych modyfikatorów dostępnych w danym systemie operacyjnym. Poszczególne opcje programu dostępne są z poziomu **MENU** programu zarządzającego.

3.1.1. Opis funkcjonalności Menu – FILE

Rys. 22 – Menu – FILE

Opis dostępnych opcji Menu – FILE)

Funkcja/ Polecenie	Opis		
Open grid file [Ctrl+O]	Wczytanie z wybranej przez użytkownika lokalizacji, pliku *.inp, zawierającego siatkę (składającą się z czworokątnych paneli), opisującą geometrię obiektu będącego przedmiotem analizy, Rys. 23.		
Open grid file with Wake [Alt+Ctrl+O]	Wczytanie z wybranej przez użytkownika lokalizacji, pliku *.dat, zawierającego siatkę wraz z wygenerowanym śladem wirowym, dla obiektu będącego przedmiotem analizy.		
Open pressure distribution file [Alt+Ctrl+T]	Wczytanie z wybranej przez użytkownika lokalizacji, pliku *.txt, zawierającego wyniki obliczeń aerodynamicznych (dla poszczególnych paneli siatki) dla obiektu będącego przedmiotem analizy.		
Open and show results file	Wyświetlenie w zewnętrznym oknie wyników (z wybranego przez użytkownika pliku *.out) , Rys. 25.		
Save picture as [Ctrl+S]	Zapisanie w postaci obrazu JPEG , PNG lub BMP aktualnie wyświetlanej zawartości głównego okna graficznego programu PANUKL. Wyświetlone zostaje okno wyboru, Rys. 24.		
Exit [Alt+X]	Zakończenie pracy z programem, zamknięcie aplikacji.		

🚱 🕞 🗼 + Panuki	• dat • inp	• 😰	yszukaj		
🕘 Organizuj 🔻 📑 Wide	oki 💌 📑 Nowy folder Nazwa 🗐 🚽 Data moc	lyfikacii 🛛 📲 Typ	- Rozmiar		
Colucione rqu2a Colucione rqu	Nieokreślone (1) test.inp Płik.TMP 4 bajtów				
Nazwa	pliku:	<u>.</u>	*.inp Files Otwórz	Anuluj	*.inp *.dat *.txt

Rys. 23 – Przykładowe okno wyboru pliku

Niektóre okna wyboru plików z dysku mogą się różnić wyglądem w zależności od posiadanego systemu operacyjnego, wygląd okien nie wpływa w żaden sposób na działanie programu.

3.1.2. Opis funkcjonalności Menu – DRAW

Rys. 26 - Menu - DRAW
Opis dostępnych opcji Menu – DRAW)

Funkcja/ Polecenie	Opis
Redraw (1:1)	Odświeżenie widoku (w oknie graficznym), powrót do
[F5]	oryginalnej skali obiektu.
Enlarge [+]	Powiększenie widoku (w oknie graficznym).
Reduce	Zmniejszenie widoku (w oknie graficznym)
[-]	
Turn on keyboard control	Włączenie obsługi widoku (w oknie graficznym) z poziomu
[check box]	klawiatury, Rys. 26.

Rys. 27 – Obsługa widoku z poziomu klawiatury

3.1.3. Opis funkcjonalności Menu – DATA

Rys. 28 – Menu - DATA

W menu **DATA** użytkownik odnajdzie najważniejsze podprogramy należące do pakietu **PANUKL.** Obecnie znajduje się tam podprogram **FUSELAGE DATA** ułatwiający tworzenie pliku z geometrią kadłuba [*nazwa*.**f**]. Opis podprogramu znajduje się w rozdziale 4.2.

3.1.4. Opis funkcjonalności Menu – CREATE

Rys. 29 – Menu – CREATE

W menu **CREATE** użytkownik odnajdzie najważniejsze funkcje pakietu **PANUKL**, które umożliwiają przeprowadzenie całkowitej sesji obliczeniowej dla danego zbioru danych wejściowych.

Opis dostępnych opcji Menu – CREATE)

Funkcja/ Polecenie	Opis
	Polecenie uruchamia program Mesh.exe , składnik pakietu
	PANUKL, który dla wybranego zbioru danych, zawierającego
Create grid file	opis geometrii modelu (zbiór główny *.ms2 [X]) wygeneruje
	plik, zawierający siatkę *.inp, opisującą geometrię modelu.
	Siatka składa się z czworokątnych paneli, Rys. 30.

Rys. 30 - Tworzenie pliku siatki dla danego zbioru danych (modelu)

Funkcja/ Polecenie	Opis
	Polecenie uruchamia program Neigh.exe , składnik pakietu
	PANUKL, który dla wybranego pliku zawierającego siatkę *.inp
Create grid file with the	modelu, wygeneruje plik *.dat .
neighbours	W pliku wyjściowym *.dat zapisana zostaje siatka modelu wzbogacona o wygenerowany ślad wirowy oraz informacje o pumorach, sociadów" poszczogólnych papoli siatki
	numerach "sąsiadow poszczegolnych paneli slatki.

Możliwość 1 – posiadamy zapisany na dysku plik konfiguracyjny *.ngh, Rys. 31

Po wywołaniu funkcji **Create grid file with the neighbours** zostaje wyświetlone okno w którym program prosi o wskazanie przez użytkownika pliku konfiguracyjnego ***.ngh** – plik zawiera zapisane opcje dotyczące sposobu tworzenia pliku ***.dat**. Wybrany plik ***.ngh** otwieramy klikając przycisk **OTWÓRZ/OPEN**. Pojawia się okno Rys. 31 w którym widoczne są zapisane opcje dotyczące sposobu tworzenia pliku ***.dat** klikamy przycisk **Save and Compute (ok)**.

Możliwość 2 – <u>nie posiadamy</u> pliku konfiguracyjnego *.ngh, Rys. 31

Po wywołaniu funkcji **Create grid file with the neighbours** zostaje wyświetlone okno w którym program prosi o wskazanie pliku konfiguracyjnego ***.ngh** – klikając przycisk **ANULUJ/CANCEL** przechodzimy bezpośrednio do okna Rys. 32 w którym użytkownik może wybrać opcje dotyczące sposobu tworzenia pliku ***.dat**. W celu zapisania wybranych opcji do pliku ***.ngh** klikamy przycisk **Save [*.ngh] file as**, wygenerowanie pliku ***.dat** zatwierdzamy klikając przycisk **Save and Compute (ok)**.

Select [.ngh] file:		Select [.ngh] file:		<u>×</u>
🕥 🎉 🔹 Łukasz St	itefanek - Panuki - dat - neigh 🛛 🛛 🔯 🔤 🤤	🗾 🕖 📕 + Lukasz Ste	afanek • Panukl • dat • neigh 🛛 • 😝 🥅 Wyszukaj	1
👌 Organizuj 👻 🏥 Widok	ki 👻 📑 Nowy folder	😧 🔍 Organizuj 👻 📆 Widoki	👻 📑 Nowy folder	0
Ulubione łącza	Nazwa A V Data modyfikacji V Typ V Rozmiar V	Ulubione łącza	Nazwa 🔺 🔹 Data modyfikacji 🔹 Typ 🛛 🔹 Rozmiar	-
Dokumenty	Product regit	Dokumenty		
Pulpit	istnieje plik	Pulpit	nie istnieje pli	k
Komputer Obrazy	konfiguracyjny * ngh	P Obrazy	konfiguracyjny *	nah
Muzyka	Konngulacyjny ingh	Muzyka	Konngulacyjny	ligii
🗿 Ostatnio zmienione		💮 Ostatnio zmienione		
😰 Wyszukiwania		Wyszukiwania		
Ju Publiczny		J Publiczny		
Foldery ^		Foldery		
Nazwa pi	vilku: Predator.ngh 💌 📩 ngh Files	Nazwa plil	au 💽 🚺	Files 💌
		ikij	ANULUJ/CANCEL→ □	twórz Anuluj
sprawo	dzenie zanisanych ustawień w	- K	onfiguracia/ wybór dostenny	vch opcij
opran		•	inganaoja nybor acorępi.	, en op oj.
La	ngh] file parameters			
	Input avid file [inp]	redator inn	Browno	
	input grid me (.mp) (crosers/Eddas/Fandkodabinp/Fi	redator.mp	Diowse	
	Output grid file [.dat] C:/Users/Lucas/Panukl/dat/dat/P	redator.dat	Browse	
	30.0 Trailing edge angle (deg):	Wake type desc	ription:	
	60.0 Neighbour condition angle [deg]:	0 - wake paralel to 1	MAC wash due to angle of attack	
	5.0 Angle of attack [deg]:	2 - wake with down	wash due to sideslip angle	
	O Sideslip angle [deg]:	4-6 - wake with the	same effect as in cases 1-3	
		but only for last	wake panels	
	20.0 Lenght of the wake (last panel - MAC mul	Itiplication)		
	0 Wake type			
-				1
	Save and Compute (O.K.)	Save [.ngh] file as	Cancel	

Rys. 31 – Tworzenie pliku(zbioru) *.dat

Ustawienie	Opis
Length of the wake	Długość śladu wirowego podana jako krotność średniej cięciwy
(MAC multiplication)	aerodynamicznej.
Wake type description	 Sposób tworzenia śladu wirowego: 0 – ślad równoległy do średniej cięciwy aerodynamicznej 1 – ślad odchylony zgodnie z kątem natarcia α 2 – ślad odchylony zgodnie z kątem bocznego ślizgu β 3 – ślad równoległy do kierunku przepływu 4 – ślad odchylony (tylko dla ostatnich paneli) zgodnie z kątem natarcia α 5 – ślad odchylony (tylko dla ostatnich paneli) zgodnie z kątem bocznego ślizgu β 6 – ślad równoległy (tylko dla ostatnich paneli) do kierunku przepływu
Trailing edge angle [deg]	Kąt ostrza. Jeżeli kąt pomiędzy panelami na krawędzi spływu jest mniejszy lub równy podanej wartości to z tak zdefiniowanej krawędzi będzie poprowadzone pasmo śladu wirowego.
Neighbour condition angle [deg]	Wartość kąta warunkująca zerowanie "sąsiadów". Jeśli kąt pomiędzy dwoma sąsiadującymi panelami siatki będzie większy od podanej wartości, panele te nie będą traktowane jako sąsiadujące.
Angle of attack [deg]	Kąt natarcia (uwzględniany przy tworzeniu śladu wirowego).
Sideslip angle [deg]	Kąt bocznego slizgu (uwzględniany przy tworzeniu śladu wirowego).

Rys. 33 – Przykładowy plik: siatka + ślad wirowy "Predator.dat"

Funkcja/ Polecenie	Opis
	Polecenie uruchamia program Panukl.exe , składnik pakietu PANUKL , który dla wybranego pliku danych *.dat , wygeneruje
Compute doublet distribution	plik * .pan .
	W pliku wyjściowym *.pan zapisany zostaje wynikowy rozkład potencjału prędkości .

Możliwość 1 – posiadamy zapisany na dysku plik konfiguracyjny *.par, Rys. 34

Po wywołaniu funkcji **Compute doublet distribution** zostaje wyświetlone okno w którym program prosi o wskazanie przez użytkownika pliku konfiguracyjnego ***.par** – plik zawiera zapisane opcje dotyczące sposobu tworzenia pliku ***.pan**. Wybrany plik ***.par** otwieramy klikając przycisk **OTWÓRZ/OPEN**. Pojawia się okno Rys. 34 w którym widoczne są zapisane opcje dotyczące sposobu tworzenia pliku ***.pan**. W celu wygenerowania pliku ***.pan** klikamy przycisk **Save and Compute (ok)**.

Możliwość 2 – nie posiadamy pliku konfiguracyjnego *.par, Rys. 34

Po wywołaniu funkcji **Compute doublet distribution** zostaje wyświetlone okno w którym program prosi o wskazanie pliku konfiguracyjnego ***.par** – klikając przycisk **ANULUJ/CANCEL** przechodzimy bezpośrednio do okna Rys. 35 w którym użytkownik może wybrać opcje dotyczące sposobu tworzenia pliku ***.pan**. W celu zapisania wybranych opcji do pliku ***.par** klikamy przycisk **Save [*.par]** file as, wygenerowanie pliku ***.pan** zatwierdzamy klikając przycisk **Save and Compute (ok)**.

Program **Panukl.exe** oblicza współczynniki wpływu i rozwiązuje układ równań dając w wyniku rozkład potencjału prędkości. Moduł ten ma największe wymagania sprzętowe. Czas trwania obliczeń może być znaczny i zależy w przybliżeniu od trzeciej potęgi paneli.

Select [.par] file:	×	💹 Select [.par] file:		×
🚫 🖟 • Łukasz St	tefanek • Panuki • dat • panuki • 😰 Wyszukaj 😢	🕥 🗼 + Łukasz :	Stefanek - Panuki - dat - panuki 🛛 - 😥 🥡 Wyszukaj	
🕘 Organizuj 👻 🏥 Widoki	i 🔻 📑 Nowy folder 📀	🕛 Organizuj 👻 🏥 Wido	ki 🔻 📑 Nowy folder	0
Ulubione łącza	Nazwa A V Data wykonania V Tagi V Rozmiar V Klasyfikacja V	Ulubione łącza	Nazwa 🔺 💌 Data wykonania 💌 Tagi 🛛 💌 Rozmian	↓ Klasyfikacja ↓
Dokumenty	Preoator.par	Dokumenty		
Nulpit		Pulpit		
Komputer		Komputer		
Dirazy		Cobrazy		
Muzyka Ostatnio zmienione	<u>istnieje</u> plik	Ostatnio zmienione	nie istnieje p	lik
Wyszukiwania	konfiguracyiny *.par	Wyszukiwania	konfiguracviny	*.par
Publiczny		Publiczny		.p
Foldery		Foldery	-	
Nazwa pli	iku: Predator par	Nazwa i	piku 🔪	r Files 👻
sprawo	dzenie zapisanych ustawień 🕈		konfiguracja/ wybor dostępn	iych opcji
Panukl [.par] file pa	arameters			
				- 1
Input grid file [dat] C/Users/Lucas/Panuki/dat/dat/Predator.dat		Browse		
Output file [.p	pan] C:/Users/Lucas/Panukl/dat/panukl/Predator.pan			Browse
Angle o	of attack [deg]: 5.0 Roll rate [rad/s]: 0	_	Linear equation solver:	
Sideslij	p angle [deg]; 0 Pitch rate [rad/s]; 0		CAPACK optimized procedure	
М	lach Number: 0 Yaw rate [rad/s]: 0		not optimized procedure	
Save	and Compute (O.K.)	ır] file as	Cancel	

Rys. 34 – Tworzenie pliku(zbioru) *.pan

Output file [.pan] C:/Users/Lucas/Panuk	l/dat/panukl/Predator.pan ← ścieżk	a do pliku wynikowego *.pan	Browse
Angle of attack [deg]: 5.0	Roll rate [rad/s]:	Linear equation solver:	
Sideslip angle (deg): 0	Pitch rate [rad/s]: 0	LAPACK optimized procedure	
Mach Number: 0	Yaw rate [rad/s]: 0	\diamondsuit not optimized procedure	
Save and Compute (O.K.)	Save [.par] file as	Cancel	1

Ustawienie	Opis
	Wybór procedury rozwiązującej układ równań :
Linear equation solver	- LAPACK optimized procedure (domyślna)
Linear equation solver	- not optimized procedure (procedura licząca dłużej ale
	może być dokładniejsza)
Angle of attack [deg]	Kąt natarcia [deg], mierzony jako kąt pomiędzy kierunkiem prędkości niezaburzonej a kierunkiem osi OX.

Sideslip angle [deg]	Kąt bocznego opływu [deg].
Mach Number	Liczba Macha .
Roll rate [rad/s]	P - Prędkość kątowa przechylania [rad/s]
Pitch rate [rad/s]	Q - Prędkość kątowa pochylania [rad/s]
Yaw rate [rad/s]	R - Prędkość kątowa odchylania [rad/s]

Funkcja/ Polecenie	Opis
	Polecenie uruchamia program Press.exe , składnik pakietu PANUKL , który dla wybranego pliku danych * .pan , wygeneruje następujące pliki: * .out, *.txt, *.eps .
Compute pressure	W pliku wyjściowym *.out zapisane zostają wyniki obliczeń całkowitych współczynników aerodynamicznych .
distribution	W pliku wyjściowym *.txt zapisane zostają wyniki obliczeń dotyczące składowych prędkości, osobliwości, ciśnień itp. dla poszczególnych paneli .
	W pliku wyjściowym *.eps zapisane zostają wyniki obliczeń kąta odchylenia strug (zbiór tworzony opcjonalnie).

Możliwość 1 – posiadamy zapisany na dysku plik konfiguracyjny *.prs, Rys. 36

Po wywołaniu funkcji **Compute pressure distribution** zostaje wyświetlone okno w którym program prosi o wskazanie przez użytkownika pliku konfiguracyjnego ***.prs** – plik zawiera zapisane opcje dotyczące sposobu tworzenia zbiorów wynikowych ***.out**, ***.txt**, ***.eps**. Wybrany plik ***.prs** otwieramy klikając przycisk **OTWÓRZ/OPEN**. Pojawia się okno Rys. 36 w którym widoczne są zapisane opcje dotyczące sposobu tworzenia pliku ***.out**, ***.txt**, ***.eps**. W celu wygenerowania pliku ***.prs** klikamy przycisk **Save and Compute (ok)**.

Możliwość 2 – nie posiadamy pliku konfiguracyjnego *.prs, Rys. 36

Po wywołaniu funkcji **Compute pressure distribution** zostaje wyświetlone okno w którym program prosi o wskazanie pliku konfiguracyjnego ***.prs** – klikając przycisk **ANULUJ/CANCEL** przechodzimy bezpośrednio do okna Rys. 37 w którym użytkownik może wybrać opcje dotyczące sposobu tworzenia zbiorów wynikowych ***.out**, ***.txt**, ***.eps**. W celu zapisania wybranych opcji do pliku ***.prs** klikamy przycisk **Save [*.par] file as**, wygenerowanie zbiorów wynikowych ***.out**, ***.txt**, ***.eps** zatwierdzamy klikając przycisk **Save and Compute (ok)**.

		Select [.prs]	file:	
🕥 🌗 🔹 tukasz Stefar	ek • Panukl • dat • press 🔹 🌄 🤤 🤯		• Lukasz Stefanek • Panuki • dat • press	• 🗱 Wyszuka)
Organizuj • 🏭 Widoki •	Nowy Folder	😧 🔄 Organizut •	• 🏥 Widoki 👻 🃑 Nowy Folder	
Jubione łącza Na Dokumenky Pulpit Komputer	owa ^ • Deta modyfikacji v Typ. • Rozmiar • Predstor	Ulubione łącze Dokumenky Pulpit Kompuber	Nazwa * 🕶 Data modyfikacji 💌 Typ	• • Rozmiar •
Obrazy Muzyka Ostatnio zmienione Wyszukiwania Publiczny	<u>istnieje</u> plik konfiguracyjny *.prs	Obrazy Mizyka Ostatila zmie Wyszukiwania Publiczny	^{mone} <u>nie is</u> • konfigui	<u>tnieje</u> plik racyjny *.prs
Foldery A	Predator	Foldery	Nazwa pikur	• Prs Files •
Press [.prs] file p	arameters 1) C:/Users/Lucas/Panukl/dat/panukl/Predatc	pr.pan		Browse
Range of p	anel's indices used for pressure calculation:	0 100000	calculation method (0-8 see user r	manual) 8
X coord	linate's range used for pressure calculation:	0 100.0	averaging of the local coordinate	system 🗾
🔄 X compon	ent of pressure taken into account for pitching	moment calculation		
Downwash cal	culation:	Number of mesh points for do	wnwash calculation longwise Y (X) ax	is: 16
Downwash cal	culation:	Number of mesh points for do Number of mesh points for	wnwash calculation longwise Y (X) ax r downwash calculation longwise Z ax	iis: <mark>16</mark> iis: <mark>8</mark>
Downwash cal	culation:	Number of mesh points for do Number of mesh points for X (Y) coord	wmwash calculation longwise Y (X) ax r downwash calculation longwise Z ax inate of plane for downwash calculatio	is: 16 is: 8 on: 25.0
Downwash cal	culation:	Number of mesh points for do Number of mesh points for X (Y) coord Y (X) boo	wmwash calculation longwise Y (%) ax r downwash calculation longwise Z ax inate of plane for downwash calculatio undary coordiantes of downwash mes	is: 16 is: 8 on: 25.0 h: -10.00 10.00
Downwash cal	culation: Trefz plane	Number of mesh points for do Number of mesh points for X (Y) coord Y (X) boo Z boo	wmwash calculation longwise Y (X) ax r downwash calculation longwise Z ax inate of plane for downwash calculatio undary coordiantes of downwash mes undary coordiantes of downwash mes	is: 16 is: 8 25.0 h: -10.00 10.00 h: -10.00 10.00
Downwash cal	culation: Trefz plane ible correction: � None ◇ F	Number of mesh points for do Number of mesh points fo X (?) coord Y (%) bou Z bou Prandtl-Glauert Q Karm	wmwash calculation longwise Y (%) ax r downwash calculation longwise Z ax inate of plane for downwash calculatio undary coordiantes of downwash mes undary coordiantes of downwash mes nan-Tsien Mach Numb	is: 16 is: 8 25.0 h: -10.00 10.00 h: -10.00 10.00 er: 0

Rys. 36 – Tworzenie zbiorów wynikowych: *.out, *.txt, *.eps

Ranna of nanal's indices used for pressure calculation:		100000	calculation me	thod (0-8 see user ma	nual) p	
X coordinate's range used for pressure calculation:	0	100.0	averaging of	the local coordinate sy	stem 🗾	
X component of pressure taken into account for						
ownwash calculation:	Number o	f mesh poin	ts for downwash calculati	on longwise Y (X) axis:	16	1
None	Numbe	er of mesh p	oints for downwash calcu	llation longwise Z axis:	8	
> YZ plane		×c	r) coordinate of plane for (downwash calculation:	25.0	
> (XZ) plane			r (X) boundary coordiante	s of downwash mesh:	-10.00	10.00
drag in the Trefz plane			Z boundary coordiante	s of downwash mesh:	-10.00	10.00
Compressible correction: $~~$ None $~~$ $~~$	Prandtl-Glau	Jert 4	🛇 Karman-Tsien	Mach Number:	0	
- Save and Compute (O.K.)	Save	e [.prs] file a	s	Ca	ncel	

Rys. 37 – Okno konfiguracyjne – tworzenie zbiorów wynikowych: *.out, *.txt, *.eps

Ustawienie	Opis
Range of panel's indices used for pressure calculation	Wartości oznaczające numery paneli, pierwszy i ostatni, które będą uwzględniane przy wyznaczaniu globalnych współczynników aerodynamicznych.
X coordinate's range used for pressure calculation	Wartość początkowa i końcowa współrzędnej X dla przedziału, który będzie uwzględniony przy wyznaczaniu globalnych współczynników aerodynamicznych.
X component of pressure taken into account for pitching moment calculation	Zaznaczenie pola spowoduje uwzględnienie, składowej X-owej ciśnienia przy obliczaniu globalnych wartości momentu pochylającego.
Calculation metod (0-8)	Wybór metody różniczkowania rozkładu potencjału (Stosowane są 4 metody podstawowe i ich średnie. Podstawowe metody polegają na wyznaczeniu wielomianu na podstawie znanych wartości potencjału na danym panelu i jego 8 sąsiadach):
	 9- średnia z dwóch, spośród czterech niżej wymienionych metod, dających najbardziej zbliżone wyniki, 1- metoda kolokacji - wielomian postaci: φ(x,y)=Ax²y²+Bx²y+Cxy²+Dxy+Ex²+Fy²+Gx+Hy+I, 2- metoda kolokacji (z pominięciem punktu na danym panelu) - wielomian postaci: φ(x,y)=Bx²y+Cxy²+Dxy+Ex²+Fy²+Gx+Hy+I, 3- aproksymacja wielomianem postaci: φ(x,y)=Bx²y+Cxy²+Dxy+Ex²+Fy²+Gx+Hy+I, 4- aproksymacja wielomianem postaci: φ(x,y)=Dxy+Ex²+Fy²+Gx+Hy+I, 5- metody 1, 2 i 3, 6- metody 1, 2 i 4, 7- metody 1, 3 i 4, 8- (domyślna) metody 2, 3 i 4.
Averaging of local coordinate system	Likwidacja możliwych do wystąpienia błędów podczas różniczkowania potencjału, wynikających z niekorzystnego "numerycznie" położenia lokalnego związanego z panelem układu współrzędnych.

Downwash calculation:	Wyznaczenie kąta odchylenia strug za płatem:
	None-kąt odchylenia strug nie jest wyznaczany (wynikowy plik *.eps nie zostaje zapisany),YZ plane-kąt odchylenia strug wyznaczany zostaje w płaszczyźnie OYZ,XZ plane-kąt odchylenia strug wyznaczany zostaje w płaszczyźnie OXZ.
Number of mesh points for downwash calculation longwise Y (X) axis:	Liczba punktów wzdłuż osi Y (lub X – jeśli XZ plane) w których będzie obliczony kąt odchylenia strug.
Number of mesh points for downwash calculation longwise Z axis:	Liczba punktów wzdłuż osi Z w których będzie obliczony kąt odchylenia strug.
X (Y) coordinate of plane for downwash calculation:	Współrzędna X (lub Y – jeśli XZ plane) wyznaczająca położenie płaszczyzny w której będzie liczony kąt odchylenia strug.
Y (X) boundary coordinates of downwash mesh:	Początkowa i końcowa wartość współrzędnej Y (lub X – jeśli XZ plane), ograniczające prostokątny obszar w którym będzie liczony kąt odchylenia strug.
Z boundary coordinates of downwash mesh:	Początkowa i końcowa wartość współrzędnej Z , ograniczające prostokątny obszar w którym będzie liczony kąt odchylenia strug.
Drag In the Trefz plane	Wyznaczenie oporu w płaszczyźnie TREFZA.
Compressible correction:	Uwzględnienie poprawki dotyczącej ściśliwości dla zadanej liczby Macha :
	None–brak poprawki,Prandtl-Glauert–poprawka Prandtla-Glauerta,Karman-Tsien–poprawka Karmana-Tsiena.

Funkcja/ Polecenie	Opis
Connect two grids	Polecenie uruchamia okno konfiguracyjne programu, który służy do łączeniem siatek modeli, [4.1].

Rys. 38 – Okno konfiguracyjne – Correct Neighbours

3.1.5. Opis funkcjonalności Menu – XFOIL

🚴 Panukl 2002 - Grid viewer	
File Draw Data Create	Xfoil Tools Help
	Interactive mode Interactive mode for stored wing section geometry Polar calculation
	Conversion .prf -> xfoil Conversion xfoil -> .prf
	Open Xfoil polar
	Show drag polar
	Show lift coefficient
	Show moment coefficient
	Show drag polar Show lift coefficient Show moment coefficient

Rys. 39 – Menu – XFOIL

W menu **XFOIL** użytkownik znajdzie najważniejsze funkcje, które mają na celu ułatwienie analizy aerodynamicznej wykorzystywanych profili, przy użyciu zewnętrznego programu **XFOIL**. W celu prawidłowego wykorzystania i interpretacji otrzymanych wyników wymagana jest podstawowa znajomość programu **XFOIL**.

Opis dostępnych opcji Menu –XFOIL)

Funkcja/ Polecenie	Opis
Interactive mode	Polecenie uruchamia zewnętrzny program XFOIL (jeśli został wcześniej zainstalowany [2.1]). Wywołane zostaje standardowe okno programu, Rys. 40, program XFOIL jest gotowy do pracy.
Interactive mode for stored wing section geometry	Uruchomienie zewnętrznego programu XFOIL dla wybranego pliku *.dat , Rys. 40 zawierającego opis geometrii profilu, który będzie poddany analizie aerodynamicznej.

Rys. 40 – Zewnętrzne okno programu XFOIL wraz z oknem wyboru pliku *.dat profilu

Funkcja/ Polecenie	Opis
Polar calculation	Wyznaczenie podstawowych charakterystyk aerodynamicznych: CL-siły nośnej, CD-oporu, CM-momentu, w funkcji kąta natarcia Alpha dla danej liczby Reynoldsa i liczby Macha dla wybranego przez użytkownika profilu (opis geometrii - plik *.dat). Obliczenia charakterystyk wykonane przy wykorzystaniu zewnętrznego programu XFOIL . Wyniki obliczeń – charakterystyki aerodynamiczne zapisane w pliku tekstowym *.txt , Rys. 41.
Open XFOIL polar	Wczytanie z wybranej lokalizacji na dysku pliku z zapisanymi charakterystykami aerodynamicznymi profilu, Rys. 43. Po wczytaniu pliku z danymi *.txt , aktywne stają się poniższe polecenia:
Show Drag polar	Wyświetlenie okna z charakterystyką CD-oporu , Rys. 44.
Show Lift coefficient	Wyświetlenie okna z charakterystyką CL-siły nośnej, Rys. 44.
Show Moment coefficient	Wyświetlenie okna z charakterystyką CM-momentu , Rys. 44.

W przypadku obliczeń aerodynamicznych przy użyciu programu **XFOIL** użytkownik powinien zwrócić uwagę na to czy obliczenia zbiegają się a otrzymane wyniki "są prawidłowe" z punktu widzenia prowadzonej analizy.

Rys. 42 – Okno programu XFOIL – obliczenia charakterystyk aerodynamicznych profilu

Rys. 43 – Okno wyboru pliku w którym zapisane zostały obliczone charakterystyki aerodynamiczne dla danego profilu

Dopiero po wczytaniu pliku z danymi dotyczącymi charakterystyk profilu ***.txt**, aktywne stają się polecenia: **Show Drag polar**, **Show Lift coefficient**, **Show Moment coefficient**.

Rys. 44 – Przykładowe charakterystyki aerodynamiczne profilu CL, CD, CM w funkcji kąta natarcia

Funkcja/ Polecenie	Opis
Conversion *.prf to XFOIL	Opcja umożliwiająca konwersję pliku *.prf zawierającego definicją geometrii profilu w formacie akceptowanym przez program PANUKL do formatu *.dat akceptowanego przez program XFOIL , Rys. 45.
Conversion XFOIL to *.prf	Opcja umożliwiająca konwersję pliku *.dat zawierającego definicją geometrii profilu w formacie akceptowanym przez program XFOIL do formatu *.prf akceptowanego przez program PANUKL , Rys. 45.

konwersja *.PRF - PANUKL do *.DAT - XFOIL

anukl wing section file (.prf)	C:/Users/Luca	s/Panukl/dat/profile/naca65009.prf	- ścieżka do pliku *.prf	Browse
Xfoil labeled data file (.dat)	C:/Users/Luca	s/Panukl/dat/xfoil/naca65009.dat	- ścieżka do pliku *.dat	Browse
Wing section name	NACA65009	- nazwa profilu (należy v	wpisać)	

konwersja *.DAT - XFOIL do *.PRF - PANUKL

cied data me (.ddg. 0.703613/Ed	as/Panuki/datxtoii/naca65009.dat -	ścieżka do pliku *.dat		Browse
ng section file [.prf]: C:/Users/Lu	as/Panuki/dat/profile/naca65009.prf •	- ścieżka do pliku *.prf		Browse
Ving section name: naca65009,	- nazwa konwertowanego	profilu (wczytana z pliku *.	dat)	
ang section name. Inacapsoog		promu (wczytana z pirku .		

Rys. 45 – Konwersja plików z geometrią profili

3.1.6. Opis funkcjonalności Menu – TOOLS

Rys. 46 – Menu – TOOLS

Opis dostępnych opcji Menu –TOOLS)

Funkcja/ Polecenie	Opis
	Wyświetlenie okna w którym użytkownik może zmienić
Files location	ustawienia dotyczące lokalizacji i nazwy folderów w których są
	przechowywane dane wejściowe i otrzymane wyniki, Rys. 47.

Rys. 47 – Określenie lokalizacji plików zawierających dane wejściowe i wyniki

Użytkownik może automatycznie stworzyć strukturę katalogów na pliki danych i wyniki wymaganych przez program, poprzez kliknięcie przycisku **CREATE SUBDIRS**. W celu zapisania ustawień klikamy przycisk **SAVE**.

Rys. 48 – Okno wyboru opcji dotyczących sposobu wyświetlania modelu

Funkcja/ Polecenie	Opis	
Image translation	Wyświetlenie okna zawierającego panel sterujący	
inage translation	przesunięciem modelu w oknie graficznym Rys. 49.	

Funkcja/ Polecenie	Opis	
	Wyświetlenie okna w którym użytkownik może zmieniać	
Color map	i ustawiać sposób w jaki będą prezentowane otrzymane wyniki	
	dotyczące rozkładów np. współczynnika ciśnienia,	
	prędkości, itp., Rys. 50.	

Rys. 50 – Okno wyboru opcji dotyczących graficznej reprezentacji wyników

Funkcja/ Polecenie	Opis
	Wyświetlenie okna w którym użytkownik może zmieniać
JPEG parameters	i ustawiać opcje dotyczące sposobu zapisu obrazów
	przechwytywanych z głównego okna graficznego
	programu, Rys. 51.

zapis wybranych opcji

Rys. 51 – Okno wyboru opcji dotyczących zapisu plików JPEG – "zrzuty ekranu"

Funkcja/ Polecenie	Opis
Save options [Shift+Ctrl+S]	Zapisywanie bieżących ustawień programu PANUKL.

3.1.7. Opis funkcjonalności Menu – HELP

Rys. 52 – Menu – HELP

Opis dostępnych opcji Menu – HELP)

Funkcja/ Polecenie	Opis
Manual (F1)	Wyświetlenie pliku pomocy na temat programu PANUKL.
Manual language	Wybór języka pliku pomocy (dostępny: PL i ENG)
PDF reader selection	Wybór programu do obsługi i wyświetlania pliku pomocy.
About	Wyświetlenie okna w którym użytkownik może znaleźć informacje na temat programu PANUKL , Rys. 52.

Rys. 53 – Okno informacyjne o programie PANUKL

Rys. 54 - Scenariusz 1 - podstawowa procedura obliczeniowa

Rys. 55 – Scenariusz 2 – uproszczona procedura obliczeniowa (przy założeniu, że użytkownik posiada wygenerowany plik z geometrią i śladem oraz zapisane na dysku pliki konfiguracyjne)

3.3. Przepływ informacji pomiędzy programami w trakcie prowadzenia obliczeń

Rys. 56 – Przepływ informacji pomiędzy programami MESH, NEIGH, PANUKL i PRESS

4. Dodatki i uzupełnienia

4.1. Funkcja łączenia siatek modeli

Wybierając z menu **CREATE** programu **PANUKL** opcję **CONNECT TWO GRIDS** Rys. 57 uruchamiamy narzędzie do łączenia zapisanych już na dysku siatek z wygenerowanym śladem wirowym [*nazwa*.**dat**].

Create	
Create gri	d file
Create gri	d file with the neighbours
Compute	doublet distribution
Compute	pressure distribution
Connect ty	vo grids

Rys. 57 – Menu programu CREATE – funkcja CONNECT TWO GRIDS

Dzięki tej opcji programu możliwe jest tworzenie skomplikowanych siatek obliczeniowych składających się z więcej niż jednego obiektu oraz tworzenie niesymetrycznych, rozbudowanych siatek. Opcja ta daje użytkownikowi programu **PANUKL** możliwości np: analizy wzajemnego wpływu aerodynamicznego jednego obiektu na drugi (kiedy dwa (lub więcej) obiekty znajdują się w bliskiej odległości) lub np: analizy odłączania np. zbiornika podwieszanego z samolotu itp.

Rys. 58 - Sposób działania funkcji do łączenia siatek

Sposób działania

Możliwość 1 – posiadamy zapisany na dysku plik konfiguracyjny *.con

Po wywołaniu funkcji **CONNECT TWO GRIDS** zostaje wyświetlone okno Rys. 59 w którym program prosi o wskazanie przez użytkownika pliku konfiguracyjnego ***.con** – plik zawiera zapisane opcje dotyczące sposobu tworzenia pliku ***.dat**, (nowego pliku, który będzie zawierał złożenie wybranych przez użytkownika siatek). Wybrany plik ***.con** otwieramy klikając przycisk **OTWÓRZ/OPEN**. Pojawia się okno Rys. 60 w którym widoczne są zapisane opcje dotyczące sposobu tworzenia pliku ***.dat**. W celu wygenerowania pliku ***.dat** klikamy przycisk **Save and Compute (ok)**.

Rys. 59 – Okno wyboru pliku konfiguracyjnego *.con

Możliwość 2 – nie posiadamy pliku konfiguracyjnego *.con

Po wywołaniu funkcji **CONNECT TWO GRIDS** zostaje wyświetlone okno w którym program prosi o wskazanie pliku konfiguracyjnego ***.con** – klikając przycisk **ANULUJ/CANCEL** przechodzimy bezpośrednio do okna Rys. 61 w którym użytkownik może wybrać opcje dotyczące sposobu tworzenia pliku ***.dat**. W celu zapisania wybranych opcji do pliku ***.con** klikamy przycisk **Save [*.con] file as**, wygenerowanie pliku ***.dat** zatwierdzamy klikając przycisk **Save and Compute (ok)**.

Input master gr	id file (.dat) [CDUsers/L	ucas/Panukl/dat/dat/te	st_01.dat			Browse.
Input slave grid file [.dat] C:/Users/Lucas/Panukl/dat/dat/dat/test_02.dat						Browse
Output gr	id file (.dat) C:/Users/L	ucas/Panukl/dat/dat/te	st_01_and_test_02.dat			Browse .
	Master transform	nation:		Slave transfo	irmation:	
Offset coordinate:	s (in input master coord	linates system):	Offset coord	inates (in input master co	ordinates system):	
×: 0	Y: O	Z: O	× o	Y: O	Z: 0	
Rotation angles [deg):		Rotation ang	ales (deg):		
yaw: 0	pitch: 0	roll: 0	yaw: O	pitch: 0	roll: 0	
Rotation origin co	ordinates (in master co	ordinates system):	Rotation orig	gin coordinates (in slave c	oordinates system):
×	Y: O	Z: 0	× o	Y: O	Z: 0	
Rotation origin op	ition:		Rotation orig	in option:		
user defined	© origin (0,0,0)	C MAC quarter	🖲 user defir	ned © origin (0,0,0)	C MAC quarter	
			Reference values:			
Option:			Surface: 0	Wing span: 0	MAC: 0	_
user defined	© master values	© slave values	, Moment calculat	ion origin X: 0	Z: 0	
Save and	Compute (O.K.)		Save [.con] file as		Cance	0

Rys. 60 – Główne okno konfiguracyjne dotyczące funkcji łączenia siatek modeli

Т	Input master grid file [.dat] C:/Users/Lucas/Panukl/dat/dat/test_01.da	at	Browse
	Input slave grid file [.dat] C:/Users/Lucas/Panukl/dat/dat/test_02.da	at	Browse
L	Output grid file [.dat] C:/Users/Lucas/Panukl/dat/dat/test_01_a	nd_test_02.dat	Browse
۲	Master transformation:	Slave transformation:	
T	Offset coordinates (in input master coordinates system):	Offset coordinates (in input master coordinates system):	
L	X: 0 Y: 0 Z: 0	X: 0 Y: 0 Z: 0	
Т	Rotation angles [deg]:	Rotation angles [deg]:	
	yaw: O pitch: O roll: O	yaw: O pitch: O roll: O	
T	Rotation origin coordinates (in master coordinates system):	Rotation origin coordinates (in slave coordinates system)):
Т	X: 0 Y: 0 Z: 0	X: 0 Y: 0 Z: 0	
L	Rotation origin option:	Rotation origin option:	
L	♥ user defined O origin (0,0,0) O MAC quarter	● user defined C origin (0,0,0) C MAC quarter	
F	Refe	rence values:	
	Option: Surfa	ce: 0 Wing span: 0 MAC: 0	_
	user defined O master values O slave values	New Address of the State of the	

dla modelu docelowego np: test_01_and_test_02.dat

Rys. 61 – Główne opcje funkcji do łączenia siatek modeli

Funkcja/ Polecenie	Opis			
Offset coordinates (in input	Określenie współrzędnych przesunięcia obiektu – X, Y, Z			
master coordinates system)	w układzie w którym był stworzony dany obiekt.			
	Obracanie obiektu po przez podanie odpowiednich wartości			
	kątów [deg], względem punktu zdefiniowanego względem:			
	User defined – punkt zdefiniowany przez użytkownika,			
Rotation angles [deg]	Origin (0,0,0) – początek układu współrzędnych dla danego			
	obiektu (określony w trakcie definiowania			
	obiektu składowego),			
	MAC quarter – ¼ SCA dla danego obiektu.			
	Określenie wartości odniesienia: powierzchni, rozpiętości, SCA			
	dla obiektu będącego złożeniem obiektów składowych, dostępne opcje:			
Reference values	User defined – wartości odniesienia zdefiniowane przez			
	użytkownika,			
	Master values – wartości odniesienia takie same jak dla			
	obiektu nadrzędnego,			
	Slave values – wartości odniesienia takie same jak dla			
	obiektu podrzędnego,			

4.2. Tworzenie skomplikowanych siatek w oparciu o funkcję – CONNECT TWO GRIDS

Program **PANUKL** w najnowszej wersji oferuje możliwość tworzenia skomplikowanych siatek obliczeniowych oraz sitek niesymetrycznych. Cała procedura tworzenia bazuje na funkcji łączenia siatek – **CONNECT TWO GRIDS** [4.1].

Poniżej przedstawiono przykładowy schemat tworzenia rozbudowanej siatki w oparciu o odpowiednio przygotowane pliki z geometrią ***.dat**.

Rys. 62 – Przykład rozbudowanej siatki w programie PANUKL

Sposób postępowania

Rys. 63 – Plik *.dat – pierwsza część siatki (kadłub, płat i usterzenie)

Tworzymy pierwszy plik z geometrią. Plik **"01.dat**" będzie zawierał symetryczny kadłub wraz ze szczątkowym płatem, usterzeniem oraz wygenerowanym śladem.

UWAGA: Płat główny do którego będziemy doklejać dalsze części samolotu nie może być zamknięty żebrem. W pliku definiującym geometrię płata *.ms2 należy wybrać znacznik: 0 – brak żebra zamykającego płat Rys. 63.

Krok 2

Kolejny fragment siatki zapisany w pliku "**02_L.dat**" zawiera prawą połowę gondoli silnikowej, kawałek płata (płat niezamknięty żebrem) oraz wygenerowany ślad. Przy tworzeniu tego fragmentu wykorzystano możliwość tworzenia wybranej połówki (lewej bądź prawej) danego obiektu (patrz opis pliku ***.ms2** [1.3.1] "**SEKCJA OGÓLNA**") – model niesymetryczny. Sama gondola silnikowa jest tworzona analogicznie jak kadłub.

Krok 3

Rys. 65 – Plik *.dat – kolejny element siatki (końcówka płata i gondola – lewa strona)

Następny fragment siatki zapisany w pliku "**03_L.dat**" zawiera lewą część gondoli silnikowej i końcówkę płata.

Analogicznie tworzymy prawe fragmenty płata !

Krok 4

Gdy posiadamy już tak przygotowane elementy składowe naszej siatki, łączymy je w całość. Wykorzystujemy do tego funkcję programu **PANUKL – CONNECT TWO GRIDS** [4.1]. W celu prawidłowego połączenia siatek składowych musimy znać ich dokładne położenie przestrzenne.

Poniższe rysunki przedstawiają przykładową kolejność łączenia siatek:

Rys. 67 – Operacja sklejania 1

Rys. 68 – Operacja sklejania 2

Rys. 69 – Operacja sklejania 3

Rys. 70 – Operacja sklejania 4

Krok 5

Po przeprowadzeniu ostatniej operacji sklejania należy wygenerowaną siatkę sprawdzić. W tym celu wykorzystujemy funkcję programu – **CORRECT NEIGHBOURS** [3.1.4] (sprawdzenie "sąsiadów").

Rys. 71 – Wygenerowana siatka + zobrazowane wyniki

Po przeprowadzeniu operacji korekcji sąsiadów, geometria jest już gotowa do dalszej pracy.

Uwagi:

Jak w każdym przypadku istnieją pewne ograniczenia dotyczące wykonania siatki przy pomocy techniki sklejania.

- Sklejane fragmenty siatki w miejscu połączenia muszą posiadać taki sam podział i nie mogą być zamknięte. Np. dla płata w miejscu sklejania, użytkownik musi zachować profil i jego podział wzdłuż cięciwy.
- Sklejane elementy musza posiadać jedną wspólną "płaszczyznę sklejania".
- Przy pomocy przedstawionej metody możemy zrealizować niesymetryczny kadłub (gondolę, skrzydło) którego prawa i lewa część nie będzie jednakowa. Taki kadłub (gondola, skrzydło) zostanie sklejony z dwóch różnych połówek.
- W celu prawidłowego wykonania niesymetrycznego kadłuba (gondoli) musimy pamiętać o zachowaniu identycznej ilości wręg definiujących kształt dla obu połówek.
- Położenie wzdłuż osi podłużnej samolotu wręg, musi być takie same dla obu połówek kadłuba (gondoli).
- W miejscu przejścia skrzydło –kadłub(gondola), możemy uprościć geometrię skrzydła w sposób pokazany na poniższym rysunku. Ułatwia to znacząco wykonanie takiej siatki.

Rys. 72 – Upraszczanie siatki - łatwiejsze wykonanie przejścia skrzydło–gondola.

4.3. Opis zewnętrznego podprogramu do generacji piku geometrii kadłuba – FUSELAGE DATA

Program FUSELAGE DATA

Program **FUSELAGE DATA** został stworzony w celu usprawnienia procesu tworzenia plików [*nazwa*.**f**] zawierających definicję kadłuba samolotu. Pliki te używane są przez pakiet **PANUKL**. Program **FUSELAGE DATA** zwany dalej zewnętrznym podprogramem umożliwia:

Tworzenie plików [nazwa.f] na podstawie plików tekstowych zawierających zbiór punktów opisujących poszczególne wręgi kadłuba, przy czym mogą to być pliki z rozszerzeniem [nazwa.w] w których w każdym wierszu podane są trzy współrzędne punktu definiującego obrys wręgi, bądź pliki z rozszerzeniem [nazwa.txt] wygenerowane przez program UNIGRAPHICS i zawierające informacje o obiektach (w tym przypadku są to punkty leżące na wrędze).

Uwagi: Dla każdej z wręg wymagany jest oddzielny plik [*nazwa*.**w**] bądź [*nazwa*.**txt**]). Kolejność punktów w tych plikach jest dowolna.

• Modyfikację istniejących plików [nazwa.f].

Główna część programu FUSELAGE DATA

	🕶 Fuselage		_ 🗆 🗙	
	Directory :			
$(1) \rightarrow$	E:/FUSELAGE/FRAMES/		Browse	(2)
	Output File :			
$(3) \rightarrow$	E:/FUSELAGE/FRAMES/Fuselage.f		Browse	4
E	Create Modify		☐ Preview	R
	1 Frames Prefix :			U
	1 Longerons	Clear	Create	
	NX files	Frame #0		

Rys. 73 – Główne okno programu zewnętrznego FUSELAGE

W głównej części programu można określić:

 Katalog zawierający pliki ze współrzędnymi punktów na wręgach kadłuba. Pliki [nazwa.w] lub [nazwa.txt]. Katalog ten może być wpisany lub wybrany po naciśnięciu przycisku ².

Plik kadłuba [nazwa.f], który chcemy stworzyć lub zmodyfikować. Ścieżkę do pliku i jego nazwę można wpisać, bądź odnaleźć na twardym dysku komputera po naciśnięciu przycisku
 Nie jest wymagane, by plik ten znajdował się w katalogu
 W przypadku tworzenia geometrii kadłuba istnienie pliku nie jest wymagane.

Zakładki wyboru trybu pracy: tworzenia CREATE
 lub modyfikacji MODIFY.
 Przycisk okna podglądu
 utworzonego lub modyfikowanego pliku.

Ilosc			Fuselage.r	
	punktor	ina wre	dze 15	
Ilosc	wreq	31		1
Wrega	0			
0.	0000	0.0000	0.0000	
Wrega	1			
150	ດົດດດ	0 0000	-180 4524	
150	0000	41 8783	-174 4000	
150	0000	80 5378	-157 3226	
150.	0000	112 4116	-120 6040	
150.	0000	120 0000	-130.0040	
150.	0000	155.0000	-96.0137	
150.	0000	100.0428	-30.0063	
150.	0000	163.8136	-16.4349	
150.	0000	162.6027	25.8904	
150.	0000	162.6027	25.8904	
150.	0000	162.6027	25.8904	
150.	0000	149.5808	71.6466	
150.	0000	124.7965	112.2441	
150.	0000	89.7626	144.3986	
150.	0000	46.9871	165.1445	
150.	0000	0.0000	172.3266	
Wrega	2			
300.	0000	0.0000	-292.4588	
300	0000	68 6992	-282 6371	
300	0000	132 0419	-254 2738	
300	0000	185 7380	-210 2658	
300.	0000	227 0116	-154 4144	
200	0000	254 1660	-00 4741	
300.	0000	204.1009	22 1002	
300.	0000	266.3607	-22.1093	
300.	0000	262.9191	47.2293	
300.	0000	262.9191	47.2295	
300.	0000	262.9191	47.2295	
300.	0000	239.2965	116.6981	
300.	0000	197.1904	176.7975	
300.	0000	140.1570	222.9847	
300.	0000	72.7311	251.9793	
300.	0000	0.0000	261.8606	
Wrega	3			
450.	0000	0.0000	-382.7154	
450.	0000	91.3805	-370.0054	
450.	0000	175.9616	-333.1124	
450.	0000	248.1035	-275.5597	ļ
450	0000	202 7260	_201 0750	

Rys. 74 – Okno podglądu pliku z zapisaną geometrią kadłuba

Tryb tworzenia w programie FUSELAGE DATA

Rys. 75 – Tryb tworzenia w programie FUSELAGE

W trybie tym można stworzyć plik z geometrią kadłuba akceptowany przez program PANUKL:

llość wręg (wliczając wręgę nr 0).

- Ilość podłużnic na wrędze.
- Prefiks. Nazwa każdego z plików zawierających punkty obrysu wręgi kadłuba musi mieć postać: [<prefiks>_<nr>.w] lub [<prefiks>_<nr>.txt]. Gdzie <nr> to kolejny numer wręgi. Numerowanie wręg rozpoczyna się od 0. Wręga zerowa zawiera współrzędne noska kadłuba. Można ją określić w sekcji 6.

Jeśli dane wejściowe są w postaci plików [*nazwa*.**txt**] w sekcji ⁵ należy zaznaczyć opcję **NX FILES** i określić dodatkowo układ współrzędnych, w którym podane są współrzędne punktów (**WCS** lub **ABSOLUTE**).

Przycisk tworzenia pliku geometrii kadłuba używanego w pakiecie PANUKL.

Tryb modyfikacji w programie FUSELAGE DATA

Rys. 76 – Tryb modyfikacji w programie FUSELAGE

W trybie tym można dokonać modyfikacji pliku kadłuba. Modyfikacja może polegać na:

• Przeskalowaniu 🛈 kadłuba.

Jeżeli zostanie wybrana opcja **EQUAL FACTORS** ⁽²⁾ skalowanie będzie równomierne we wszystkich trzech kierunkach (**X**, **Y**, **Z**).

i/lub przesunięciu ³ kadłuba.

Kadłub może być przesunięty o określoną ilość jednostek na każdym z kierunków (o **DX**, **DY**. **DZ**) lub do określonego punktu o współrzędnych **X**, **Y**, **Z** (w punkcie tym będzie znajdował się nosek kadłuba). Wyboru typu przesunięcia dokonuje się w sekcji (5). Jeżeli zostanie wybrana opcja oś kadłuba będzie leżała w płaszczyźnie **XZ**. Przycisk (6) służy do wprowadzenia zmian w pliku geometrii kadłuba.

4.4. Eksport geometrii z systemu UG NX4 do programu PANUKL

Przedstawiony poniżej schemat przygotowania geometrii w systemie **UNIGAPHICS NX** na potrzeby programu **PANUKL** jest jednym z wielu możliwych do zastosowania. Schemat ten jest na tyle prosty do opanowania i uniwersalny, że z powodzeniem może być używany do tworzenia skomplikowanych i rozbudowanych modeli. Pozwala wiernie odwzorować zadaną geometrię. Metoda oferuje ogromne możliwości, a jedynymi ograniczeniami są indywidualne cechy i zdolności użytkownika (np.: zachowanie cierpliwości lub jej brak, posiadanie wyobraźni przestrzennej bądź słaby jej poziom [©]). Zaprezentowana procedura może być zrealizowana w oparciu o inne systemy umożliwiające modelowanie trójwymiarowe obiektów.

W dalszej części dokumentu, na dość prostym przykładzie przedstawiono sposób przygotowania plików z geometrią wręg kadłuba w systemie UNIGRAPHICS NX. Na ich podstawie można łatwo wygenerować plik z definicją kadłuba samolotu [*nazwa*.**f**], wykorzystywany w programie PANUKL. Założeniem autorów nie jest nauka zastosowanego do tego celu oprogramowania UNIGRAPHICS NX, tylko pokazanie jego ogólnych, ogromnych możliwości, jakie posiada dzięki zaimplementowanym w nim funkcjom. Informacje płynące ze schematu mogą z powodzeniem zostać wykorzystane przy tworzeniu wszystkich plików definiujących geometrię [*nazwa*.**f**], [*nazwa*.**ms2**] i [*nazwa*.**prf**], niezbędnych w programie PANUKL. W opinii autorów niniejszego dokumentu, definicja kadłuba z "ładnym" przejściem skrzydło-kadłub należy do najtrudniejszej części tworzenia geometrii na potrzeby programu PANUKL, dlatego skupiono się na takim a nie innym przykładzie.

Założenia dotyczące przedstawionej procedury:

- posiadanie przez użytkownika modelu 3D z geometrią obiektu jej odczyt jest możliwy w programie UNIGRAPHICS NX;
- podstawowa znajomość systemu UNIGRAPHICS NX, a w szczególności modułu dotyczącego modelowania.

Procedura postępowania

- Wczytujemy plik zawierający model 3D docelowego obiektu.
 Po odczytaniu pliku warto sprawdzić i zadbać o to, aby nosek modelu znajdował się w punkcie (0,0,0) globalnego układu współrzędnych oraz aby osie tego układu leżały zgodnie z osiami układu w którym zdefiniowana jest geometria samolotu (X do tyłu, Y na prawe skrzydło Z do góry), co znacząco ułatwi dalszą pracę.
- Odcinamy lewą połówkę modelu względem płaszczyzny symetrii ZX. Nie będzie nam już potrzebna.

Rys. 77 – Połówka modelu kadłuba z widocznym globalnym układem współrzędnych w programie UG NX4

Wycinamy w kadłubie obrys skrzydła powiększonego równomiernie względem oryginału o ~30% maksymalnej grubości profilu przy-kadłubowego. Następnie ukrywamy model skrzydła w celu ułatwienia dalszej pracy nad kadłubem.

3

Rys. 78 – Połówka modelu kadłuba z wyciętym powiększonym skrzydłem w programie UG NX4

Wstawiamy płaszczyzny ZY, DATUM PLANES w miejscach, w których będą znajdowały się wyjściowe przekroje definiujące kadłub. Warto zastanowić się i rozmieścić te płaszczyzny w taki sposób, aby odwzorowanie kadłuba było jak najlepsze, przy zachowaniu jak najmniejszej liczby przekrojów.

Rys. 79 – Połówka modelu kadłuba z umieszczonymi płaszczyznami DATUM PLANES w programie UG NX4
Ważne jest, aby współrzędne pozycjonujące płaszczyzny **DATUM PLANES** nie pokrywały się z punktami definiującymi początek (punkt początkowy na nosku profilu skrzydła) i koniec (punkt końcowy na spływie profilu skrzydła) powiększonego i oryginalnego profilu przy-kadłubowego skrzydła. Jest to istotne z punktu widzenia tworzenia geometrii.

Rys. 80 – Sposób umiejscowienia kluczowych płaszczyzn DATUM PLANES, UG NX4

Po umiejscowieniu płaszczyzn **DATUM PLANES**, przy użyciu funkcji **INTERSECTION CURVE** tworzymy krzywe obrazujące przekroje kadłuba. Dodatkowo, w obszarze, gdzie powstała dziura po skrzydle wstawiamy proste łączące górne fragmenty krzywych z dolnymi.

5

Rys. 81 – Krzywe obrazujące przyszłe wręgi kadłuba, UG NX4

Na tak przygotowane krzywe nanosimy równomiernie punkty, wykorzystując do tego celu bardzo przydatną funkcję POINT SET/POINTS ON CURVE.

Rys. 82 – Połówka modelu kadłuba z wstawionymi punktami opisującymi wręgi kadłuba, UG NX4

- Liczba punktów oraz ich rozmieszczenie zależą od indywidualnych preferencji użytkownika. Musimy jednak pamiętać o tym, by wstawione punkty, po połączeniu prostymi odcinkami (zaczynając od noska kadłuba) tworzyły regularne podłużnice. Istotne jest, aby jedna z nich trafiała w nosek profilu skrzydła, przebiegała wewnątrz profilu i wychodziła z punktu leżącego na końcu krawędzi spływu. Jest to główna podłużnica, której numer określony licząc od dołu kadłuba, będzie potrzebny na etapie tworzenia pliku definiującego [nazwa.ms2], (patrz opis programu PANUKL).
- Liczba punktów na każdej wrędze musi być jednakowa, z wyjątkiem noska i końca kadłuba, gdzie należy zdefiniować tylko jeden punkt (szczegółowe informacje na ten temat można znaleźć w instrukcji obsługi do programu PANUKL).

Rys. 83 – Przykładowe rozmieszczenie punktów definiujących wręgi kadłuba w części obejmującej skrzydło

W niektórych miejscach (przed noskiem profilu skrzydła i za punktem końcowym na krawędzi spływu) istnieje potrzeba wstawienia tego samego punktu kilka razy. Dobrze rozmieszczone punkty, po połączeniu wzdłuż kadłuba mają układać się w podłużnice o łagodnym, regularnym kształcie.

Rys. 84 – Połówka modelu, widoczne podłużnice utworzone po połączeniu punktów opisujących kadłub, UG NX4

Tak przygotowane punkty zaznaczamy grupami, które tworzą poszczególne wręgi. Następnie zapisujemy współrzędne punktów dla danej wręgi kadłuba do pliku za pomącą funkcji **INFORMATION/ OBJECT/ POINT**. Uwaga, należy zapisywać pliki z wręgami zachowując z góry określone nazewnictwo np. **w_1.txt** – wręga 1 (nie licząc wręgi zerowej) itd. Ułatwi to późniejszą obróbkę plików.

Rys. 85 – Eksport współrzędnych punktów z UG NX4

Warto zauważyć, że im więcej punktów, tym lepiej odwzorowany model kadłuba, ale czas obliczeń w programie **PANUKL** wzrasta z powodu dużej liczby wygenerowanych paneli.

Przygotowane pliki zawierające współrzędne wręg kadłuba wystarczy odpowiednio zaimportować do pliku [nazwa.f] definiującego kadłub (patrz opis programu PANUKL).

Dodatkowe uwagi:

 Istotną sprawą przy tworzeniu kadłuba i przejścia skrzydło-kadłub jest sposób w jaki definiujemy dwa pierwsze profile płata. Złe określenie położenia dwóch pierwszych profili płata może dać "dziwne" efekty przy tworzeniu kadłuba. Na następnej stronie przedstawiono prawidłowe rozwiązania.

Poniżej przedstawiono efekty pracy z wykorzystaniem powyższej procedury eksportu geometrii:

Rys. 87 – Modele przygotowane z zastosowaniem przedstawionej procedury eksportu geometrii na potrzeby programu PANUKL

Rys. 88 – Modele przygotowane z zastosowaniem przedstawionej procedury eksportu geometrii na potrzeby programu PANUKL

Rys. 89 – Modele przygotowane z zastosowaniem przedstawionej procedury eksportu geometrii na potrzeby programu PANUKL

Rys. 90 – Modele przygotowane z zastosowaniem przedstawionej procedury eksportu geometrii na potrzeby programu PANUKL

Rys. 91 – Modele przygotowane z zastosowaniem przedstawionej procedury eksportu geometrii na potrzeby programu PANUKL