Data to size the tail

by T. C. Corke „Design of Aircraft"

$S_{\mathrm{HT}}=C_{\mathrm{HT}} \frac{\bar{c}_{W} S_{W}}{l_{\mathrm{HT}}}$,

Horizontal tail
volume coefficient

$$
S_{\mathrm{VT}}=C_{\mathrm{VT}} \frac{b_{W} S_{W}}{l_{\mathrm{VT}}},
$$

Vertical tail
volume coefficient
Corke

Horizontal tail (H) and vertical tail (V) volume coefficients - typical values

	C_{VT}	C_{HT}
Sail Plane	0.02	0.50
Homebuilt	0.04	0.50
General Aviation (single engine)	0.04	0.70
General Aviation (twin engine)	0.07	0.80
Twin Turboprop	0.08	0.90
Combat Jet Trainer	0.06	0.70
Combat Jet Fighter	0.07	0.40
Military Transport/Bomber	0.08	1.00
Commercial Jet Transport	0.09	1.00

Volume coefficients of V-tail

Corke

Typical length of tail part of fuselage related to total length

Type	$l_{\text {Tail }} / l_{\text {Fuselage }}$
Front-Mounted Prop.	0.60
Wing-Mounted Engines	$0.50-0.55$
Fuselage-Mounted Engines	$0.45-0.50$
Canard	$0.30-0.50$

Typical values of tail aspect ratio and taper ratio

$$
\begin{aligned}
A & =\frac{b^{2}}{S} \\
C_{r} & =\frac{2 S}{b(1+\lambda)} \\
C_{t} & =\lambda C_{r} .
\end{aligned}
$$

	Aft-horizontal		Vertical	
	A	λ	A	λ
Combat	$3-4$	$0.2-0.4$	$0.6-1.4$	$0.2-0.4$
Sail Plane	$6-10$	$0.3-0.5$	$1.5-2.0$	$0.4-0.6$
Other	$3-5$	$0.3-0.6$	$1.3-2.0$	$0.3-0.6$
T-Tail	-	-	$0.7-1.2$	$0.6-1.0$

Corke

Interference coefficients for different types of tail

	\mathcal{Q}
Conventional Tail	1.05
V-Tail	1.03
H-Tail	1.08

