

OptiM 10.0 Manual

Written by: Jacek Mieloszyk

Warsaw, 2022

 - 3 -

1. INTRODUCTION .. 5

1.1 WHAT IS OPTIM .. 5
1.2 SOFTWARE LICENSE AGREEMENT ... 5
1.3 VERSIONS REFERENCE .. 7

2. THEORY GUIDE ... 9

2.1 DIRECTIONAL NON-GRADIENT OPTIMIZATION .. 9
2.1.1 Simulated Annealing .. 9
2.1.2 Hooke-Jeeves.. 10
2.1.3 Powell ... 12
2.1.4 Nelder-Mead .. 13

2.2 GRADIENT BASED OPTIMIZATION .. 15
2.2.1 Steepest Descend Method ... 18
2.2.2 Conjugate Gradient Method ... 18
2.2.3 Quasi Newton Method .. 18
2.2.4 Newton Method .. 18
2.2.5 One Direction Search Methods .. 18

2.3 HEURISTIC OPTIMIZATION METHODS ... 19
2.3.1 Monte Carlo Optimization ... 19
2.3.2 Genetic Optimization.. 20
2.3.3 Swarming Optimization .. 24

3. OPTIM INSTALTION .. 26

3.1 OPTIM INSTALATION PROCEDURE ... 26
3.2 COMPILATOR INSTALATION .. 26

3.2.1 Linux... 26
3.2.2 Windows ... 26

3.3 COMPILING THE DYNAMIC LIBRARIE .. 27
3.4 USING PYTHON .. 28
3.5 USING MATLAB ... 28

4. OPTIM USER GUIDE ... 30

4.1 FILE .. 31
4.1.1 File > Parameters .. 31
4.1.2 File > Data Format .. 32
4.1.3 File > Parallel.. 32
4.1.4 File > Exit .. 33

4.2 OPTIMIZATION .. 33
4.2.1 Optimization > File paths .. 33
4.2.2 Optimization > Initialize .. 34
4.2.3 Optimization > Solver .. 35
4.2.4 Optimization > Annealing .. 35
4.2.5 Optimization > HookeJeeves ... 36
4.2.6 Optimization > Powell ... 37
4.2.7 Optimization > NelderMead .. 37
4.2.8 Optimization > Gradient .. 38
4.2.9 Optimization > Gradient > Direction .. 38
4.2.10 Optimization > Gradient > Alfa Search .. 39
4.2.11 Optimization > Monte Carlo ... 40
4.2.12 Optimization > Genetic Algorithm .. 41
4.2.13 Optimization > Genetic Algorithm > Genetic Selection ... 41
4.2.14 Optimization > Genetic Algorithm > Genetic Methods .. 42
4.2.15 Optimization > Swarming ... 43
4.2.16 Optimization > Stop Criterion ... 43
4.2.17 Optimization > Flags .. Błąd! Nie zdefiniowano zakładki.

 - 4 -

4.3 OPTIMIZATION .. 44
4.3.1 Utilities > InitFromSol ... 44
4.3.2 Utilities > Statistics .. 45
4.3.3 Utilities > MinMax ... 45
4.3.4 Utilities > Norm ... 46

4.4 PLOT ... 46
4.4.1 Plot > Settings .. 46
4.4.2 Plot > Post ... 47
4.4.3 Plot > Popup menu .. 48

4.5 HELP ... 48
4.5.1 Help > Manual ... 48
4.5.2 Help > License ... 48
4.5.3 Help > About .. 48

5. VAREDIT USER GUIDE .. 49

5.1 VARIABLES ... 50
5.2 CONSTRAINS ... 51
5.3 OBJECTIVE FUNCTIONS... 51

6. NUMERICAL UTILITIS .. 52

6.1 DELETE FILE ... 52
6.2 PIPE .. 52
6.3 ERROR .. 52
6.4 PENALTY .. 53
6.5 ALGEBRA FORMULAS ... 53

7. EXAMPLES .. 55

7.1 EXAMPLE – PARABOLOID ... 55
7.2 EXAMPLE – ROSENBROCK FUNCTION ... 56
7.3 EXAMPLE – ROSENROCK MULTIDIMENSIONAL .. 56
7.4 EXAMPLE – RASTRIGIN FUNCTION ... 57
7.5 EXAMPLE – WING OPTIMIZATION ... 58

APPENDIX A - LIST OF OPTIM KEY SHORTCUTS ... 59

 Introduction

__
 - 5 -

1. INTRODUCTION

1.1 WHAT IS OPTIM

It’s an engineering toolbox, written in C++, that can be used for any problem which

requires numerical optimization. OptiM uses the most known optimization algorithms. It
is capable of linking programs for analyze that support scripting, macros or use input files.
Objective function is determined in a simple dynamically linked library. Additional functions
contain useful tools to define optimization tasks quickly. The program is very flexible and
can fulfill the most demanding needs of the user.

1.2 SOFTWARE LICENSE AGREEMENT

This is a legal agreement ("this Agreement") between OptiM authors ("the Authors")

and the licensee ("the Licensee"). The Authors license the OptiM Software ("the
Software") only if all the following terms are accepted by the Licensee. The Software
includes the OptiM byte code executable and any files and documents associated with it.
By installing the Software, the Licensee is indicating that he/she has read and understands
this Agreement and agrees to be bound by its terms and conditions. If this Agreement is
unacceptable to the Licensee, the Licensee must destroy any copies of the Software in
the Licensee's possession immediately.

1. LICENSE CONDITIONS AND RIGHTS

Libraries included with the program remain integral part of the program and can not be
linked with other software.

The Licensee has right to use the Software and its documentation for non-commercial
purpose.

The Licensee may use the Software for commercial and common education purposes
after registration. The registration includes sending name and logo of the institution that
will use the software on an e-mail: jmieloszyk@meil.pw.edu.pl, with declaration containing
permission to process the data to advertise OptiM.

The Licensee may not reverse engineer, disassemble, decompile, or unjar the Software,
or otherwise attempt to derive the source code of the Software.
The Licensee acknowledges that Software furnished hereunder is under test and may be
defective. No claims whatsoever can be made on the Authors based on any expectation
about the Software.

 Introduction

__
 - 6 -

Revised and/or new versions of the License may be published with new versions of the
Software.

2. TERM, TERMINATION AND SURVIVAL

The Licensee may terminate this Agreement at any time by destroying all copies of the
Software in possession.
If the Licensee fails to comply with any term of this Agreement, this Agreement is
terminated and the Licensee has no further right to use the Software.
On termination, the Licensee shall have no claim on or arising from the Software.

3. NO WARRANTY

The Software is licensed to the Licensee on an "AS IS" basis. The Licensee is solely
responsible for determining the suitability of the Software and accepts full responsibility
and risks associated with the use of the Software.

4. MAINTENANCE AND SUPPORT

The Authors are not required to provide maintenance or support to the Licensee.

5. LIMITATION OF LIABILITY

In no event will the Authors be liable for any damages, including but not limited to any loss
of revenue, profit, or data, however caused, directly or indirectly, by the Software or by
this Agreement.

6. DISTRIBUTION

The Software can be copied and redistributed, under condition that no fee is charged for
theservice

 Introduction

__
 - 7 -

1.3 VERSIONS REFERENCE

Version Date Changes

1.0 -Simple program with Steepest Descent and Newton

 method

2.0 2009-08-21 -Choelsky matrix factorization for Newton

 method added

 -Polak Ribiere direction search method added

 -Quasi Newton direction search method added

 -Alfa search algorithm with Strong Wolf conditions

 | added

 V -Alfa search interpolation with second and third order

 interpolation added

 -Objective function difference stop criterion added

 -Gradient equal to zero stop criterion added

 2010-01-26 -Conditions for reliable gradient computation

2.1 2010-05-06 -Improved Alfa search

 -Armijo condition for Alfa search added

 -Improved Hessian computation of Newton method

 | -Smaller memory allocation requirements

 V -Dump Hessian restarts for Quasi Newton method added

 -Penalty quadratic function constrains added

2010-07-09 -Some other errors removed

3.0 2010-08-01 -Genetic Algorithms

 | -GUI

 V -OptiM libraries

 2011-01-05 -Many user work efficiency improving function

3.1 2011-01-13 -Tester of objective function added

-Functions for users added

-Fast update of OptiM.ini file added

 | -Real time results displaying

 V -Warnings about lack of input files

-Warnings about overwriting files

-Other warnings

2011-01-27 -Many errors removed

3.2 2011-02-01 -GA cos(MOM) improvement

 | -resolution of variables in GA

 V -write dF and p to Log

 2011-08-15 -Small errors removal

4.0 2011-08-16 -Linux version of OptiM

-GUI main layout changed

 | -Monte Carlo optimization added

 V -Swarming optimization added

-Ability to define users functions of derivatives

2011-10-28 -Other small changes and errors removal

 Introduction

__
 - 8 -

5.0 2012-12-28 -Hook-Jeeves optimization method added

-Powell optimization method added

-Nelder-Mead optimization method added

5.1 2013-05-31 -Statistics tool added

 -Stop criterion based on statistics analysis added

 -Equally distributed starting points added

6.0 2014-10-25 -Lightly loaded dynamic libraries

 -Multithreads

 -Improved declaration of dynamic tables

7.0 – 7.1 2015-09-17 -Simulated Annealing optimization method added

 -Multiple functions added for Pareto front

 -Ploting function during optimization and for

 post processing

-Better configuration files handling and warnings

 -Improved functionality of tools

 -Number of bugs improved

8.0 2016-04-12 -GA chromosome bug removed

 -Files choosing improved

 -Powel algorithm bugs removed

 -Plot bugs fixed

-Added legend for plots

 -Flag for plotting during optimization

 -VarEdit tool added for setting design variables

 -Hard limit for constrains

 -Option to continue optimization process

 -Installation procedure changed

9.0 2017-02-18 -Gain bug fixed

-Xflags and Cflags incorporated in VarEdit

 -Added option for analytical gradient

 -Improved example for external software execution

 in Linux

-Nelder Mead algorithm computed parallel

-Gradient and Hessian computed parallel

-Added limits for axis in plots

-Added popup menu in plot for printing and picture

 saving

 -Added information about compiler used in About

 -Improved path to manual from OptiM’s menu

10.0 2022-03-10 -Solver choosing bug fixed

-Configuration file in json format

-Results printing & plotting improved

-Files menu extended

-Run optimization menu option added

 -Python coupling

 -Matlab coupling

 -New look

(PLEASE REPORT ANY OTHER ERRORS OR DESIRABLE IMPROVMENTS)

 Theory Guide

__
 - 9 -

2. THEORY GUIDE

This section describes theory that is hidden inside OptiM algorithms. Better
understanding of the processes driving the software will improve user skills.

Defining optimization task is very demanding. It is normal that the task must be
corrected few times to achieve sufficient analysis reliability and get desirable quality
results.
 Function optimization without constrains can be defined by basic equation (2.1). It
means that the function f, which depends on the optimization variables x, should be
minimized. The function has n number of design variables x, which are real numbers.

)(min xf
x

 n
Rx (2.1)

Basic notation:

f - minimized objective function
x - vector of design variables
α - one directional step/gain size

i - number of the design variable in x vector

k - current iteration number

n - number of the design variables

2.1 DIRECTIONAL NON-GRADIENT OPTIMIZATION

 This section describes family of deterministic directional non-gradient methods.

2.1.1 Simulated Annealing

 Simulated annealing algorithm was inspired by physical process of annealing in
metal parts. During the process metal can change it’s structure and the process drives
towards minimization of the internal stresses. The bigger the temperature of the metal is,
the bigger changes may go on. Because of the structure changes, temporarily structure
can have worse properties, but eventually it has less internal stresses.

This analogy is applied in the optimization algorithms. Following the procedure on
an example of a “hill climber”, simulated annealing algorithm starts from a chosen point (it
may be random) and tries to climb on the highest hill Fig. 2.1. At first it is easy to find
better solution and local optimum, but to get even higher first the climber has to go lower.
After making this step the climber can go forward to the highest point.

 Theory Guide

__
 - 10 -

Figure 2.1 Simulated annealing algorithm – hill climber.

In the subsequent iterations the numerical algorithm updates the design variables

with the formula (2.2). Parameter sign is chosen randomly “+”, or “-“. res is a relaxation
parameter set by user. Difference between objective function value, current and from
previous iteration, is described by (2.4), at the beginning it is equal to 1. Based on the new
derived values of design variables objective function is computed. Depending on the
objective functions difference and current artificial temperature acceptance probability
(2.4) of the current solution is calculated. If the temperature is higher the probability to
accept current solution is also higher. Artificial temperature drops during subsequent
iterations according to (2.5), allowing for less number of worse solutions with iterations.

)(
minmax1

xxdfressignxx
kk

 (2.2)

1

kk
ffdf (2.3)

T

df

ep (2.4)

)1(
1

CoolRateTT
kk

 (2.5)

2.1.2 Hooke-Jeeves

 In the beginning trial steps are taken, by changing every optimization variable, to
improve the objective function. After the trial steps overall search direction is estimated to
minimize objective function in this estimated direction. The algorithm is described in few
steps below, on an example of two dimensional function, with a drawing Fig. 2.2.

 Theory Guide

__
 - 11 -

Starting point of optimization is set and value of the objective function in that point

calculated. Vector of changes V

is initialized for every search direction (design variable)

with set by user perturbation dV (2.6).

dVV
i
 for every i (2.6)

Trial step in the x1 direction is taken with the step size V1 added to the variable vector

(2.7). Than the objective function is estimated, with the changed x1 and vector of design

variables
trial

x

(2.8). If the objective function was improved the trial vector of the design

variables is accepted and this becomes the new starting point.

11,1
Vxx

trial
 (2.7)

)(
trial

xf

 (2.8)

The procedure is repeated for the variable x2. The first attempt to minimize the objective
function with step like (2.7) failed and the search direction was changed (2.9) (step 4 on
Fig. 2.2). If the step still doesn’t improve the solution, there are another attempts with
reduced step size (2.10) and procedure repeat from (2.7).

11,1
Vxx

trial
 (2.9)

reduceStepVV
ii
 (2.10)

After making trial steps in the separate directions of variables, whole vector of direction

V

is set. Next the algorithm tries to make global optimization step in the direction of the

vector V

. The global step is done with Increment Step defined by user (2.11), (2.12) and
objective function evaluated again (2.8).

tepIncrementSVV

 (2.11)

Vxx
trial

 (2.12)

If the objective function was not improved with initially incremented vector V

for the next
attempt the incrimination is reduced (2.13), vector of varibles updated (2.12) and objective
function computed once again (2.8).

reduceStepVV

 (2.13)

Described behavior of the algorithm is repeated on Fig. 2.2 (steps 5-9, 9-14, 15-18).

 Theory Guide

__
 - 12 -

Figure 2.2 Hook-Jeeves optimum search method.

2.1.3 Powell

 Powell optimization method is similar to Hooke-Jeeves. The main difference is that
the coordinate system in which search direction is estimated changes with iterations to
improve speed of convergence.

First optimum gain m for every variable is estimated, utilizing single variable
minimization method of Golden Proportion. During the Golden Proportion search trial
variable is changed () and objective function evaluated with the single changed variable
(2.15).

iiitriali
emxx

,
 (2.14)

)(
trial

xf

 (2.15)

Direction vector is estimated basing on the formula (2.16). Algorithm tries to minimize in

subsequent iterations the objective function using α with the formula (2.17)

 Theory Guide

__
 - 13 -

1

1

kk

kk

k
xx

xx
e

 (2.16)

mexx
kk

1
 (2.17)

The biggest gain of the single variable minimization mi is found. If condition (2.18) is
satisfied, than the base vector for the next iteration is updated (2.19).

8.0
1

 kk

k

xx

dm
 (2.18)

kk
ee

1

 (2.19)

2.1.4 Nelder-Mead

This method, which is also called Crawling Simplex, deals well even with very

nonlinear functions. Simplex can be described in n-dimensional space as polyhedron with
n+1 vertices. During optimization process according to rules implemented in the algorithm
position of the vortices of the polyhedron change, heading to the optimum point. The
algorithm is described in points.

1. Simplex initialization with n+1 vortices in n dimensional space.

2. Computation of objective function in the vertexes of the polyhedron.

3. Finding indexes of the vertexes with the worst and the best values of the objective

function.

4. Computation of the center of symmetry of the simplex, neglecting the worst vertex,
according to formula (2.20). Estimation of objective function in the center of
symmetry of the simplex (2.9).

worst

n

i

i

vertexi
n

P

P

 ,'

1

1 (2.20)

 'Pffs (2.21)

5. Reflection of the worst vertex with accordance to the point P’ and estimation of the

value of the objective function in the new vertex P*.

 Theory Guide

__
 - 14 -

6. If objective function in the P* is smaller than previously estimated minimum
objective function value, than vertex P** is calculated utilizing formula (2.22) and
estimating objective function value in that point.

 '1

PPP (2.22)

 If f(P**) < fmin, then replace f(Pworst) with point P**.

If f(P**) ≥ fmin, then replace f(Pworst) with point P*.

7. If objective function in the P* is bigger than previously estimated minimum objective

function value, than make contraction of Pworst with accordance to P’ utilizing
formula (2.23)

 '1

PPhP (2.23)

 If f(P***) ≥ fmax, make simplex reduction utilizing formula (2.24)

2

PlPi
Pi

 , i = 1, 2, ..., n+1 (2.24)

If f(P***) < fmax, then replace Pworst with point P***.

8. If f(P*) < f(Pi) for i = 1, 2, ..., n+1, i ≠ h, replace Pworst with point P*.

9. Check stop criterion.

 Theory Guide

__
 - 15 -

Figure 2.3 Nelder-Mead optimization schema.

2.2 GRADIENT BASED OPTIMIZATION

Gradient methods belong to bigger group of deterministic optimization methods. In

directional methods starting point is chosen arbitrary, from initial calculations, or statistical
assumptions. The closer the initial configuration is to the optimum design the faster and
more probably the best solution will be found. It is possible to visualize such a task for a
function depending on two variables, Fig. 2.4 shows the starting point, optimum solution
and isolines of the optimized function. In the real conditions designer does not know the
layout of the isolines. The question is: How to get to the optimum solution in the fastest
way.

 Theory Guide

__
 - 16 -

Figure 2.4 Optimization space with starting point and minimum.

Gradient algorithm has to make small control steps to calculate local directional
derivatives, which show how fast the function values rises or drops in the tried direction.
Fig. 2.5 shows this situation. Now the best direction, to change the design variables can
be estimated. The direction depends on the direction search algorithm used. More
complex algorithms make some corrections using knowledge about values of the second
derivatives of analyzed function and history of optimization during iterations. This subject
will be explained more precisely in the following sections.

Figure 2.5 Estimation of search direction.

Having the direction in which the design will move, it is still unknown how big step should
be taken Fig 2.6. Taking to big or to small step may increase solution time and in the worst
cases the solution can be driven far away from the optimum point. Direction search
methods have to be introduced here, which estimate the optimum step size. After this
operation design is updated and moved to the new point from which the procedure is
repeated Fig 2.7.

 Theory Guide

__
 - 17 -

Figure 2.6 Estimation of step size.

Figure 2.7 New starting point.

Direction search methods

OptiM has four types of direction search methods implemented, varying in
complexity and efficiency. In all of the methods directional derivatives are computed in the
same way from equations (2.25) and (2.26). Solution from the first derivative is used to
calculate the second derivatives to save computational time. Every new derivative needs
one objective function estimation and symmetrical values of Hessian are copied.

i

i

i
x

xfxxf

x

f

 (2.25)

ji

jiji

ji
xx

xfxxfxxfxxxf

xx

xf

2

 (2.26)

More complex methods are butter for design functions which have many variables and
are strongly nonlinear. On the other hand the simplest Steepest Descend method is the
most stable method and should theoretically guaranty reaching the optimum.

 Theory Guide

__
 - 18 -

2.2.1 Steepest Descend Method

The simplest method which uses only the first derivative and does not take into

account optimization history. There is mathematical proof that using the method
guaranties reaching the optimum. This method is highly inefficient for strongly nonlinear
functions, but deals well with simpler cases.

2.2.2 Conjugate Gradient Method

Compared to the Steepest Descend Method it uses additionally history of
optimization process, which enables to make corrections of the direction estimated. It
behaves much butter in cases with nonlinear functions.

2.2.3 Quasi Newton Method

Method derived from classical Newton Method. It should be comparably efficient to
the pure Newton Method, but uses only the first directional derivatives. Second derivatives
are derived on the base of optimization history and already computed first derivatives.
Good quality and small costs. There is big family of Quasi Newton Methods, but OptiM
uses the BFGS algorithm which is considered as the most efficient one and most often
used.

2.2.4 Newton Method

In this method first and second derivatives are computed directly. The method does
not depend on the optimization history, but direct computations of the second derivatives
give the best estimation of direction. The cost of computing the Hessian is returned for
highly nonlinear functions making this method the most efficient for such cases.

2.2.5 One Direction Search Methods

At the beginning initial step size is tried. If the step satisfies conditions described
below, the solution is updated and the process starts again. If the conditions are not
satisfied new optimum step is estimated and tried. From the case with the initial step new
information is available – f(α), df/dα, so it is possible to create second order function
dependent only on the α value and estimating the optimum of the function. If the second
step size also is bad function of third order is used to estimate appropriate step size.

Armijo Condition

It is the simplest and necessary condition. If the optimized function after doing
estimated step size is smaller than the initial one the condition is satisfied (2.27). If it is
not satisfied different step size has to be estimated.

k

T

kkkk
pfCxfpxf

1
 (2.27)

 Theory Guide

__
 - 19 -

Strong Wolf Condition

This condition ensures that the optimization process is well convergent and that

the step size isn’t too small, ensuring efficiency of the optimization process. This condition
can be expressed mathematically by taking in to account equations (2.27) and (2.28).

k

T

kk

T

kkk
pfCppxf

2
 (2.28)

Solution update

 New design variables are updated according to equation (2.29).

kkkk
pxx

1 (2.29)

2.3 HEURISTIC OPTIMIZATION METHODS

Heuristic optimization methods do not have the same restrictions as directional

ones. The optimized function does not get caught by local optimums. Although, they have
stochastic nature, so every time user starts optimization, results can be slightly different
or the time arriving to the global optimum can change.

2.3.1 Monte Carlo Optimization

 Monte Carlo optimization method is simple, yet very efficient to find global
minimum. First the search area is defined and in the specified boundaries points are
selected or randomly drawn. Algorithm finds currently the best solution around which new
search area is defined Fig. 2.8. In every iteration the search area is shrunken with Radius
parameter. If the area is decreased to slowly minimum may be found after long time. If it
is decreased to quickly it may cut off the optimum solution.

 Theory Guide

__
 - 20 -

Figure 2.8 Monte Carlo optimization method visualization.

2.3.2 Genetic Optimization

Design variables real values are transformed into genes of the length defined by

the user. Minimum value will be represented by zeros and maximum by ones and every
value between by combination of 0 and 1. See the example below:

Airplane design parameters:

T/W W/S AR TR t/c Clmax
000 010 100 001 111 101 the whole string is a genome

 (genes of length 3, parameter T/W has min value, parameter t/c has max value)

Depending on the length of the genes one can achieve resolution of the design variable
by calculating (2.30). Longer genes increase design variables resolution, but also
computation time.

12

minmax

l

xx
resolution (2.30)

 Theory Guide

__
 - 21 -

Every individual from the population has it’s own features described by the genome
(design variables). Individuals with high objective function values are favored by the
Measure of Merit (MOM) function, which can have values of 1 for the best and 0 for the
worst individual. Measure of Merit can have different characteristics enabling user to
promote the best individuals or discourage the worst ones. In OptiM user can set few
types of MOM Fig 2.9.

Figure 2.9 Different types of Measure of Merit function.

To avoid counter-convergence effect, where the best individual in new population is worse
than the best individual from the previous population, Elitism rule is introduced. The rule
says that the best individual or group of the best individuals is passed to the next
generation. If to many individuals will pass to the next generation, they can easily
dominate the optimization and cause premature convergence. To create new generation
few strategies are available in OptiM. The strategies use common methods of Crossover
and Mutation.

2.3.2.1 Crossover Methods

Crossover method is a way of mixing genomes of two selected individuals. Three
types of crossover are implemented in OptiM.

Single Point:

The genomes of each individual are divided into two parts. First half of genome is

taken from the first individual and second part from the second individual. Combined parts
create new individual.

cos(MOM)

MOMMOM^2

MOM^4

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
O
M

(MOM-Worst)/(Best-Worst)

 Theory Guide

__
 - 22 -

Genome 1 010 110 101 000 011
Genome 2 111 011 110 000 010
Genome New 010 110 100 000 010

Uniform:

Genomes single positions/bits from two selected individuals are compared and if

the bits have different values, 0 or 1 is randomly selected, else the bit is rewritten to the
new genome.

Genome 1 010 110 101 000 011
Genome 2 111 011 110 000 010
Genome New 110 111 111 000 011

Parameter Wise:

Whole genes are compared of the two individuals, if they are not the same one of

the genes is randomly selected for the new individual.

Genome 1 010 110 101 000 011
Genome 2 111 011 110 000 010
Genome New 111 110 110 000 010

2.3.2.2 Mutation Method

After new genomes are created from Crossover method they go through mutation
process, which changes values of bits from 0 to 1 and opposite for the defined percentage
of the genome. The percentage of the genome to be mutated can be set manually or
automatically from the equation (2.31).

numbits

mutation
propfac

P

1
11 (2.31)

It is advised to set automatic mode for most cases, which will influence only small part of
the genome to be mutated. In those cases crossover will play the crucial role, but mutation
will not allow for premature convergence. If user wants the optimization process to be
dominated by the mutation method than manual setting is desirable.

2.3.2.3 Killer Queen Strategy Selection

This is the simplest strategy in which crossover is not used at all. From the
population the best individual is selected and the new population is created by high
mutation of the best individual. The mutation rate can get up to 90% and should be set
manually.

 Theory Guide

__
 - 23 -

2.3.2.4 Roulette Strategy Selection

In this strategy individuals selected for reproduction have some probability with
which they can be selected. The probability of selection can be expressed by (2.32), and
visualized like in Fig 2.10.

i

i

i

i
MOM

MOM
SlotSize (2.32)

Figure 2.10 Probability of selection of individuals.

Then the roulette is spined and values between 0 and sum of MOM is drawn, which
indicates one individual for reproduction. Roulette is spined as many times as many
individuals are needed for reproduction to create new population.

2.3.2.5 Breeder Pool Selection Strategy

In this strategy specified percentage of the best individuals are selected for
reproduction. Only those individuals are used for creation of the new population. From the
specified group individuals for crossover and mutation are selected in a manner described
in a roulette strategy.

2.3.2.6 Tournament Selection Strategy

 This time tournament is held between individuals of the current population. Two
couples are selected from the population in a manner described in roulette strategy.
Couples fight and the one with better objective function value fights next with the winner
from the second couple. Winner of the tournament is allowed for reproduction. Other
individuals for reproduction are selected in a same way.

 Theory Guide

__
 - 24 -

2.3.3 Swarming Optimization

Swarming optimization mimics behavior of a swarm looking for example for food.
Swarm consists of particles selected or randomly drawn from defined search area. Every
particle tries to find the optimum by movement in the search area. The movement is
defined by the particle position and vector of velocity. The velocity vector is built from three
components: velocity of the particle from the previous iteration, velocity from recorded
design variables for the best objective function evaluated of the particle and velocity from
the design variables of the globally best particle Fig. 2.11 (2.33). Some randomness of
the movement is also added by r variable to make the algorithm feasible and robust. The
random variable is higher or lower from 1 by the fraction of user defined resolution (2.34).
Constants w, s1, s2 control influence of the components of velocity on the final velocity
vector of the particles. The vector of velocity influences design variables (2.35). Wrongly
chosen constants can stop optimization process to converge. OptiM has set commonly
used constants, but they may need to be adjusted for a particular case.

kbestgloballykparticletheforbestkk

xxrsxxrsVwV

 _22___111

 (2.33)

resolution

resolutionrand
r

1
 where

1

1
rand (2.34)

kkk
Vxx

1

 (2.35)

 Theory Guide

__
 - 25 -

Figure 2.11 Example of swarming optimization.

 OptiM Installation

__
 - 26 -

3. OPTIM INSTALTION

OptiM is all purpose optimization software with GUI. It is ready to use after
unpacking, but it can be also installed on the system with the installation wizard or script.
Optimization objective function is defined by user in a dynamic library, which is linked to
the OptiM at runtime. From OptiM version 10.0 objective function can be also written in
Python and Matlab scripts.

3.1 OPTIM INSTALATION

3.1.1 Linux

 Download OptiM package for Linux and unpack it. It is ready to use. To use OptiM
with Matlab start it with the script OptiM_Matlab.sh, which sets local variables for Matlab.
To make OptiM available globally in the system run installation script OptiM_Install.sh.

3.1.2 Windows

Run setup and proceed with the instructions. Alternatively unpack archive, software
is ready to use.

3.2 COMPILATOR INSTALATION

To define the objective function in C/C++ language compiler to create the dynamic

library is needed. OptiM and original libraries were written using GCC under Linux and
MinGW-w64, with MSYS2 under Windows. OBJ_F() function can be treated as main()
function for the library. It has prefix extern "C", making it independent from code language,
compiler type (except condition for 64 bit compiler) and version.

3.2.1 Linux

 Most Linux distributions have already installed C++ compiler. To make sure GCC
compiler is installed on your Linux system, write gcc –version in terminal. You will get
message telling what version of GCC is installed on your system. If there is no compiler
installed please refer to many tutorials available in the internet how to do it for your Linux
distribution.

Create new folder in home directory, it will be your new working directory for the
project you start. You can also move OptiM_Examples directory there.

3.2.2 Windows

 Install MinGW-w64 compilers, which can be downloaded from: mingw-w64.org, or
MSYS2, which can be downloaded from: msys2.org. MSYS2 is a Linux terminal emulator
on which MinGW-w64 can be installed. Follow the instructions from MSYS2 web page
how to install and configure it with C/C++ building tools. OptiM was compiled on Windows

 OptiM Installation

__
 - 27 -

in MSYS2 environment. Compilation of the dynamic library should be also possible in
Cygwin environment: cygwin.com.

Create new folder in home directory of MSYS2, it will be your new working directory
for the project you start. You can also move OptiM_Examples directory there.

3.3 COMPILING THE DYNAMIC LIBRARIE

Open OptiM_Lib.cpp file in any text editor. It is very convenient to use editor with

C++ syntax highlight, many are available free on the web. Basic OptiM_Lib.cpp contains
similar code to the one shown below. First line include header of the OptiM library. User
can add other header files. Below the includes the definition of the objective function is
present. Input parameters are respectively:

 current iteration number,

 thread identification number (useful in parallel computations, especially for
defining unique file names for every thread, threads Id starts from “0”)

 structure with parameters from OptiM GUI (sometimes it is useful to get from
the structure number of design parameters, or working directory path for
own path creation – shown in examples)

 vector of design variables

 vector of constrains

 vector of objective functions

Inside the function user defines the optimization task. To improve work efficiency utilities
for OptiM can be added OptiM_Tools.h. They contain helpful functions of matrix algebra
and other, see chapter 5 for more details. The OptiM_Param.h have to be always included
in the library header, because of the structure Optim_Param definition.

#include “OptiM_Lib.h”

using namespace std;

double OBJ_F(int current_iter, int thread_id, Optim_Param *Par,

 double *X, double *Gain, double *C, double *F)

{

 F[0] = 100*(X[1] - X[0]*X[0])*(X[1] - X[0]*X[0]) + (1-X[0])*(1-X[0]);

 return F[0];

}

 OptiM was written utilizing cross platform C++ code. Compilation process of the
OptiM dynamic library is the same for Linux and Windows systems. After editing
OptiM_Lib.cpp, in the terminal go to the Lib directory and type make to compile the library.
Run optimization from menu, or by pressing the button with logo in the right, down corner.

 OptiM Installation

__
 - 28 -

3.4 USING PYTHON

From OptiM version 10.0 objective function can be written in Python script. To use

this option Python 3.9 has to be installed, which can be downloaded free from: python.org.
Python can be already installed on Linux systems. First three examples from
Optim_Examples contain configuration files (example: Paraboloid_Python.om) and
scripts in sub-directory Python.

Troubleshooting:

- ensure you have correct version: Python 3.9
- check if Python location was added to the system PATH
- don’t change name of the module OBJ_F.py (location can be changed and have

to be pointed in OptiM menu > File paths, OptiM sets PYTHONPATH to the
OBJ_F.py location at runtime)

- don’t change name and arguments of the OBJ_F() in OBJ_F.py (additional
functions and modules can be added)

3.5 USING MATLAB

From OptiM version 10.0 objective function can be written in Matlab script. To use

this option Matlab has to be installed, which can be downloaded free from:
mathworks.com. User also needs valid license for example from the university. First three
examples from Optim_Examples contain configuration files (example:
Paraboloid_Matlab.om) and scripts in sub-directory Matlab. OptiM uses Matlab’s:
MatlabDataArray and MatlabEngine. Therefore, user has to add to system PATH
directories, to the Matlab and its dynamic libraries:

3.5.1 Linux

 Opening OptiM with OptiM_Matlab.sh script sets LD_LIBRARY_PATH to the
Matlab directories. Before running the script user has to edit the script, verify and change
if needed Matlab installation location. LD_LIBRARY_PATH is set by the script only for the
current session. User can set LD_LIBRARY_PATH in the system permanently, then
Matlab will also work when OptiM is opened directly, not only with the script.

3.5.2 Windows

Add to the system PATH Matlab directory with Matalb’s dynamic libraries:

matlab_instalation_location\extern\bin\win64

Setting runtime environment is also described on Matlab web pages:
https://in.mathworks.com/help/matlab/matlab_external/build-c-engine-programs.html

 OptiM Installation

__
 - 29 -

Troubleshooting:

- (Linux) check if OptiM_Matlab.sh contains correct installation directory of
Matlab

- (Windows) check if matlab_instalation_location\bin (Matlab installation
process should do it) and matlab_instalation_location\extern\bin\win64
locations were added to the system PATH

- don’t change name of the script OBJ_F.m (location can be changed and have
to be pointed in OptiM menu > File paths, OptiM sets MATLABPATH to the
OBJ_F.m location at runtime)

- don’t change name and arguments of the OBJ_F() in OBJ_F.m (additional
functions and modules can be added)

3.6 OBJ_F LANGUGES PERFORMANCE COMPARISON

Using every programing language for the OBJ_F definition has its own pros and

cons pointed in Table 1. C/C++ needs compilation, Python and Matlab don’t. Python and
Matlab need system environment setting, C/C++ don’t. C/C++ is directly integrated with
OptiM. OBJ_F is opened and computed very quickly. It has very good performance for all
kind of tasks. Python OBJ_F open time and computation is fairly fast, what makes it good
choice for small and middle size optimization tasks. Matlab OBJ_F open time is slow, but
matrix operations are very fast. It is suitable for large size optimization tasks involving
matrix operations, where the open time is small compared to the analysis time.

Choice of the programing language may also depend on previous user experience
and additional libraries for the particular languages useful for specific computations.

Table 1 OBJ_F languages characteristics.

OBJ_F language Compilation Set sys. PATH Opening time Computations

C/C++ yes no negligible fast

Python no yes short fair

Matlab no yes long
very fast matrix

operations

 OptiM User Guide

__
 - 30 -

4. OPTIM USER GUIDE

 After opening OptiM you will see the main window with logo of the program Fig.4.1.
At the top of the window main menu is placed. The same menu is available under right
mouse button for faster access. Most commands from the menu have key shortcuts, which
are listed in the appendices. All options that can be set are described in the following parts
of the manual. After pushing button with OptiM logo in the lower right corner of the window
optimization start. Currently used solver for computations can be seen on the title bar of
the OptiM. The big logo will disappear and currently computed results will appear in the
main window. Bars at the bottom of the window show progress of optimization.

Figure 4.1 OptiM main window.

 OptiM User Guide

__
 - 31 -

4.1 File

4.1.1 File > Parameters

In this window Fig. 4.2 all current settings in OptiM are printed. The settings can be

saved in OptiM.om file, or with any other name. User can also read in parameters from
different file manually.

OptiM can be started in batch mode with file name as parameter. Structure of the
file have to be the same as OptiM.om file structure.

The best way to change om files content, is to make changes of parameters in the
OptiM GUI to avoid input errors.

OK – closes the Parameters window

Open – loads OptiM parameters from selected file

Save As – saves OptiM parameters to selected file

Save – saves or overwrites OptiM.om file in the working directory

Attention!!! There are no warnings about files overwriting!!!

Figure 4.2 Parameters window.

 OptiM User Guide

__
 - 32 -

4.1.2 File > Data Format

In this window Fig. 4.3 output data can be formatted to user needs.

On Screen – Things that are displayed on screen can be set here:

design variables, objective function, constrains,
sum of constrains, derivatives, sum of derivatives

Format on screen – Format for printing numbers on screen is defined hire:

field width containing the whole number of digits and
 number of digits after the dot

Format to file – Format for printing to file is defined hire:

field width containing the whole number of digits and
 number of digits after the dot

Separator in file – Many programs have different demands for white spaces,
 two options are available as a separator: four spaces or tab

Figure 4.3 Data Printing window.

4.1.3 File > Parallel

Optimization algorithms, which have to analyze groups of solutions can be
computed parallel. Currently parallelized algorithms are:

 Monte Carlo

 Genetic Algorithm

 Particle Swarm Optimization (PSO) - Swarming

 OptiM User Guide

__
 - 33 -

By default maximum number of processor cores is detected and set, but user can
change the number. Leaving one, or two processor cores not running allows for working
with less computationally demanding programs. Parallel processing can be easily turned
off by the flag in the Parallel window Fig. 4.4

Figure 4.4 Setting for parallel optimization.

4.1.4 File > Exit

Leaves the OptiM.

4.2 Optimization

4.2.1 Optimization > File paths

In this window all needed file paths are set. Every directory can be set using Browse

button.

WorkDir – This is the working directory of the project. It is added at the

beginning of the paths if local directories are detected for particular
files. It is especially useful when migrating from one computer to
other, which has different catalogues structure. If local directories are
set for files, only working directory catalogue has to changed.

Choice – Choice of the programing language in which OBJ_F is defined.

Lib – Compiled dynamic library, or Python/Matlab script.

X Limit – Configuration file with defined Min and Max range of the

design variables .

Solution – Output file with optimization history.

Log – Log file with detailed information about optimization process.

Very useful while detecting problems with optimization process.

Pareto – Extended results from all analysis done during optimization.

Useful for creating Pareto fronts and advanced post processing.

 OptiM User Guide

__
 - 34 -

Figure 4.5 File paths window.

4.2.2 Optimization > Initialize

Initial settings for optimization.

Iteration Limit – Limit of iterations after which optimization stops

Number of X – Number of design variables

Random/Uniform – Way of creating design variables for optimization algorithms
 with populations. Variable’s values are randomly selected,

or uniformly distributed between Xmin, Xmax.

Number of C – Number of constrains

Number of F – Number of objective functions to print/plot

OK – Approves changes and closes the window

Cancel – Closes window without approving changes

 OptiM User Guide

__
 - 35 -

Figure 4.6 Initialize window.

4.2.3 Optimization > Solver

 Place where optimization solver is set. Tester – is a single objective function
evaluation, for testing appropriate definition of the objective function and connection of
dynamic library. During optimization process objective function is called in the exactly
same way, but with changing design parameters. User can choose optimization solvers
between:

 Tester

 Annealing

 Hooke Jeeves

 Powell

 Nelder Mead

 Gradient

 Monte Carlo

 Genetic

 Swarming

Details of the algorithms were described in the Theory Guide section.

4.2.4 Optimization > Annealing

 Settings for Annealing optimization algorithm.

Temperature – Artificial temperature (see Theory Guide for details)

CoolingRate – (see Theory Guide for details)

Resolution – Relaxation parameter (see Theory Guide for details)

 OptiM User Guide

__
 - 36 -

Scale dF – If checked than objective function df (see Theory Guide for
details)difference is multiplied by Tcurrent/Tref

dFmin – Minimum allowable df difference. If the difference is smaller
 constant specified value is used.

Figure 4.7 Annealing window.

4.2.5 Optimization > HookeJeeves

 Settings for Hooke-Jeeves optimization algorithm.

dV – Initial value of step (speed of changes) of trial steps

Increment Step – Constant used to increase steps in case of successful
 optimization in the previous iteration

Reduction Step – Constant used to reduce steps in case of unsuccessful
 optimization in the previous iteration

Figure 4.8 HookJeeves settings window.

 OptiM User Guide

__
 - 37 -

4.2.6 Optimization > Powell

 Settings for Powell type of optimization.

Direction Iterations – Limit of iterations for direction search loop

Alfa Step Iterations – Limit of iterations for Alfa search loop

Increment Step – Constant used to increase steps in case of successful
 optimization in the previous iteration

Reduction Step – Constant used to reduce steps in case of unsuccessful
 optimization in the previous iteration

Figure 4.9 Powell settings window.

4.2.7 Optimization > NelderMead

 Settings for NelderMead type of optimization.

Reflection – Constant used for reflection procedure,
 for more details check theory chapter

Expansion – Constant used for expansion procedure,
 for more details check theory chapter

Contraction – Constant used for contraction procedure,
 for more details check theory chapter

Reduction – Constant used for reduction procedure,

 for more details check theory chapter

 OptiM User Guide

__
 - 38 -

Figure 4.10 NelderMead settings window.

4.2.8 Optimization > Gradient

 This part of the manual contains settings of parameters of Search Direction and
estimation of Alfa step for Gradient optimization.

4.2.9 Optimization > Gradient > Direction

Window where direction solver is chosen, step and way direction derivatives are
estimated. From Direction User also has to set Eps parameter and equation which defines
how the directional derivatives are calculated.

Figure 4.11 Direction window.

Direction search solver – Four methods can be chosen:
Steepest Descent, Conjugate Gradient,
Quasi Newton, Newton Method
for more details check theory chapter

 OptiM User Guide

__
 - 39 -

Derivative – Single side or double side way of

computing derivatives can be chosen.
h – Scaled perturbation to compute derivative with finite

difference method.

Eps – Perturbation to compute derivative with finite
difference method.

OK – approves changes and leaves the window

Cancel – leaves window without approving changes

4.2.10 Optimization > Gradient > Alfa Search

 Window where one direction search parameters are set.

Alfa convexity criterion – conditions which apply size of step in estimated
 direction, for more details check theory chapter

Alfa iteration limit – number of attempts to find appropriate step size, after
 that optimization stops, any plus integer number is
 allowed, but it is unpractical to exceed 10

Alfa min – if during interpolation/extrapolation process Alfa is
 smaller then Alfa min optimization stops

Alfa low – low value of Alfa step used for

 interpolation/extrapolation, This value should be
 sufficiently low for good accuracy, but higher then
 Alfa min

Alfa high – Initial value of Alfa, set to one by default, it may affect
 ThAlfa value

c1 – coefficient for the first Alfa search condition, typically 0.1

c2 – coefficient for the second Alfa search condition, typically 0.9

u – value used for calculation of Alfa step sensitivity, similar to Eps value in

 Direction Search, it may affect dThAlfa value

 OptiM User Guide

__
 - 40 -

Figure 4.12 Alfa Search window.

4.2.11 Optimization > Monte Carlo

Settings for Monte Carlo type of optimization. User sets amount of samples
evaluated during every iteration. Resolutions defines for how many parts each variable is
divided between limits set. During every iteration limits shrink proportionally to the Radius
coefficient. The bigger the Radius coefficient the more probable is finding the global
optimum, but optimization takes longer.

Samples – Number of samples to compute in an iteration.

Computations can be done parallel.

Resolution – Resolution with which range between Xmin and Xmax

is divided

Radius – Coefficient of reduction of the area

for more details check theory chapter

Figure 4.13 Monte Carlo window.

 OptiM User Guide

__
 - 41 -

4.2.12 Optimization > Genetic Algorithm

This part of the manual contains settings of parameters for Genetic Algorithms.

4.2.13 Optimization > Genetic Algorithm > Genetic Selection

General settings for genetic algorithms as well as parameters for selection of
individuals for reproduction strategy.

Population – Size of population.

Computations can be done parallel.

Genes length – Number of bits defining genes length

Resolution – Prints accuracy of variables, which depends on genes
 length

MOM Weight – Definition of Measure of Merit function,

for more details see theory chapter

Cos() Power – Additional parameter for cos(MOM) function

GA Selection Strategy – See chapter about theory

BreederPoolElit – Additional parameter for BreederPool selection
 strategy defining percentage of individuals that pass to
 next generation

 OptiM User Guide

__
 - 42 -

Figure 4.14 Genetic Selection window.

4.2.14 Optimization > Genetic Algorithm > Genetic Methods

Choice of methods used during reproduction.

Cross Over – Method of cross over of genomes of selected individuals,
 details can be found in theory guide

Mutation Factor – Mutation factor can be defined automatically or manually, in
 most cases automatic definition is desired, see theory guide

Mutation % – Mutation percentage defining how big part of genome is
 mutated

Figure 4.15 Genetic Methods window.

 OptiM User Guide

__
 - 43 -

4.2.15 Optimization > Swarming

 Here are defined setting for Swarming optimization algorithm.

Particles – Number of particles in swarm to analyze.

Computations can be done parallel.

Resolution – Number of parts for which every variable is divided
 with in prescribed limits

w – Scaling factor of global speed vector, see theory chapter

for details

s1 – Scaling factor of best particle position, see theory chapter

for details

s2 – Scaling factor of globally best particle, see theory chapter

for details

Figure 4.16 Swarming window.

4.2.16 Optimization > Stop Criterion

Defines conditions after which optimization stops. User can set the conditions,
considering them as good criterion of reaching optimum. Without this constrains
optimization will finish after specified number of iterations defined in initial conditions.
Every line contains separate condition and delta value defining the accuracy.

OBJ_F difference – Stops if changes of objective function are smaller than

delta value

 OptiM User Guide

__
 - 44 -

Gradient sum – Stops if sum of the first derivatives is less than delta,
Theoretically optimum is reached when sum of gradient
is equal to zero

OBJ_F sig – Stops if standard deviation of objective function is

below specified value

Figure 4.17 Stop Criterion window.

4.3 Optimization

4.3.1 Utilities > InitFromSol

 File with definition of the optimization variables *.var can be build based on the
solutions written in the *.sol file. User can choose iteration number from which to build the
*.var file. Minimum and maximum values will be equal. This is fine for directional
optimization algorithms, but for other optimization algorithm minimum and maximum
values should be different.

Number of Variables – Number of design variables used for the optimization
 from which results are obtained.

Init from – Iteration from which the *.var file should be build.

Sol file – Input file with results from an optimization.

Output – Output file *.var.

 OptiM User Guide

__
 - 45 -

Figure 4.18 Initialize from solution window.

4.3.2 Utilities > Statistics

This tool makes simple statistical analysis for methods that generate groups of
points for optimization. It shows average value (mi) and standard deviation (sig) for every
variable and objective function in every iteration.

Pareto data – Input *.pareto file

Output – Output file with statistics.

Figure 4.19 Statistics window.

4.3.3 Utilities > MinMax

 Finds minimum and maximum values, in an iteration, for every variable, constrain
and objective function.

Pareto data – Input *.pareto file

Output – Output file with min/max data.

 OptiM User Guide

__
 - 46 -

Figure 4.20 Min-Max window.

4.3.4 Utilities > Norm

 Normalizes the data from solution file, by dividing it by average value.

Number of Variables – Number of design variables used for the optimization
 from which results are obtained.

Iteration limit – Maximum number of iterations in the solution file.

Sol file – Input file with results from an optimization.

Output – Output file with normalized solutions.

Figure 4.21 Normalize Solution window.

4.4 Plot

4.4.1 Plot > Settings

 Basic settings for plotting.

Plot – Flag for displaying the plot during optimization

(by default turned off in batch mode).

 OptiM User Guide

__
 - 47 -

Legend – Flag for displaying legend on the plot.

Grid – Flag for displaying grid on the plot.

Background – Option for White/Black background.

Figure 4.22 Plot settings window.

4.4.2 Plot > Post

Plotting in fast postprocessing, which is based on data from *.pareto file.

Pareto file – Pareto file with data.

Iter – Used to define which iterations should be considered.

The options to choose are: All, Single + number of the
iteration, Fmin (from all iterations for the best
indywidual/sample).

X axis – Parameters for the X axis.

Y axis – Parameters for the Y axis.

Set limits – Options to set min/max limits for the plot’s axis.

 OptiM User Guide

__
 - 48 -

Figure 4.23 Plot Postprocessing window.

4.4.3 Plot > Popup menu

After plot is displayed it can be printed or saved as a picture. Options are available

under mouse right button.

Print – Standard printing menu to print the plot.

Save PNG – Saves the plot as png picture.

4.5 Help

4.5.1 Help > Manual

Opens Optim’s manual.

4.5.2 Help > License

License of the OptiM.

4.5.3 Help > About

Short information about the OptiM version.

 Numerical Utilities

__
 - 49 -

5. VAREDIT USER GUIDE

VarEdit is a simple GUI Figure 5.1 for definition of input variables, constrains and

output options for the OptiM. The data is saved in plain text format, with *.var file
extension, and can be edited manually. Tables for variables, constrains and objective
functions are limited to 1000 rows. OptiM doesn’t have such a limitation. If more input data
for OptiM is needed, it should be generated without using VarEdit tool. Program can be
also opened with single parameter, which is the configuration file.

Figure 5.1 VarEdit window.

 Numerical Utilities

__
 - 50 -

File – The configuration file user works on. It can be opened,
 saved and updated if file path is specified.

X nr – Number of optimization variables.

C nr – Number of constrains.

F nr – Number of monitored objective functions.

5.1 Variables

Fields and buttons on the top of the columns set values in all rows for the particular
column. For algorithm which start optimization from single design point, for example
gradient method, values of variables are calculated as average from Min and Max values.
Same value can be specified for Min and Max.

Id – Identification number, user refers to it in tables in the
dynamic library source code.

Name – Name of the variable showed in results, logs, plots.

Min – Minimum value of the optimization variable.

Max – Maximum value of the optimization variable.

Active – Flag sets varying, or constant value of
the design variable.

Plot – Flag sets to plot, or not the variable
during optimization.

Range – Few algorithms allow for crossing specified Min, Max
values of variables. Flag sets if the boundaries
are fixed, or not.

Comment – Optional user comment to the variable,
used only in VarEdit.

 Numerical Utilities

__
 - 51 -

5.2 Constrains

Fields and buttons on the top of the columns set values in all rows for the particular
column.

Id – Identification number, user refers to it in tables in the

dynamic library source code.

Name – Name of the constrain showed in results, logs, plots.

Gain – Gain of the constrain, which specifies it’s strength.

Active – Flag sets varying, or constant value of the constrain.

Plot – Flag sets to plot, or not the constrain
during optimization.

Comment – Optional user comment to the constrain,

used only in VarEdit.

5.3 Objective Functions

Id – Identification number, user refers to it in tables in the

dynamic library source code.

Name – Name of the objective function showed in
results, logs, plots.

Plot – Flag sets to plot, or not the objective function

during optimization.

Comment – Optional user comment to the monitored

objective function, used only in VarEdit

 Numerical Utilities

__
 - 52 -

6. NUMERICAL UTILITIS

These part of the manual describes additional functions that can be used in the
objective function. Many of the functions apply to matrix algebra. The functions should
help to work efficiently while defining the optimization task.

6.1 Delete File

int DelFile(char *FileName);

FileName - path with name to be delated

example: DelFile(“AnalysisResults.txt”);

It simply deletes file without any warnings. It can be used to delete files from
previous analysis during the iterative optimization process.

6.2 Pipe

int Pipe(char *Program, char *input, char *output, char *buffer);

Program – path with name of program/script for analysis

input - file containing command passed with pipe

output - optional output from analysis program passed from screen to file

buffer - string containing commands for analysis program

example: Pipe(“Xfoil.exe”, “”, “Xfoil_Log.txt”, buf);

It creates C pipe to program which makes analysis. The program has to have ability
to work in a console mode. The pipe can run script written in system shell (Windows also),
which contains user defined command for analysis process. OptiM waits until pipe
executes all commands and than proceeds with optimization. Commands for analysis
program can be passed by string defined in objective function or by indicating file with
commands. If user does not want to pass one of the arguments than leave nothing
between apostrophes. The parameters are concatenated to form script command:
Program < input > output. Thirst commands from input file will be executed than from the
buffer.

6.3 Error

int Error(char *Message);

Message - Text of message that will be displayed

example: Error(“OBJ_F could not be executed”);

This function can be used to display message if error occurred. After that OptiM closes.

 Numerical Utilities

__
 - 53 -

6.4 Penalty

double Penalty(double mi, double &C, double Left, char sign, double Right);

mi - parameter for penalty function constrain (see theory guide)

C - values of penalty after border crossing passed to output files

Left - left side of constrain inequality

sign - sign of inequality, three options: “<” “=” “>”

Right - right side of constrain inequality

example: Penalty(Par.mi, C[0], X[1]*X[2], “<”, 4);

The function helps user to easily put penalty barrier constrains on the design. mi

parameter can be changed in GUI, to pass it write Par->mi. C returns value of selected
constrain to constrains table, write C[number of constrain]. Next is the definition of
constrain inequality.

6.5 Algebra formulas

int Gauss(int n, double **A, double *X, double *D);

int Gauss_Jordan(int n, double **A, double *D);

n - number of variables (size of matrix)

A - pointer to A matrix

X - vector X

D - vector D

example: Gauss(n, A, X, D);

example: Gauss_Jordan(n, A, D);

Similar methods of solving system of equations: [A]*{X} = {D}. Very popular
methods, efficient when solving small matrices n = ~3000. Matrix A and vector D is known.
In Gauss method vector X contains the solution, in Gauss Jordan method vector D.

int Scale_A(int n, double *X, double *dF, double **H);

n - number of variables (size of matrix)

X - vector

dF - vector

H - matrix

example: Scale_A(n, X, dF, H);

Scales the matrix.

int x_yT(int n, double *x, double *y, double **A);

n - size of vectors

x - thirst vector

y - second vector

A - matrix with results

example: x_yT(n, x, y, A);

 Numerical Utilities

__
 - 54 -

It solves: [A] = {x}*{y}T

int A_x(int n, double *C, double **dH, double *Xo);

n - size of

C - vector with results

dH - matrix

Xo - vector

example: A_x(n, C, dH, Xo);

It solves: {C} = [dH]*{x}

double detA(int n, double **A);

n - size of matrix

A - the matrix

example: Result = detA(n, A);

It solves: Result = det|A|

double xT_A_y(int n, double *x, double **A, double *y, double **C);

n - size of matrix

x - thirst vector

A - matrix

y - second vector

C - additional empty matrix

example: Result = xT_A_y(n, x, A, y, C);

It solves: Result = {x}T*[A]*{y}

double xT_y(int n, double *x, double *y);

n - size of vectors

x - thirst pointer to vector

y - second pointer to vector

example: Result = xT_y(n, x, y);

It solves: Result = {x}T*{y}

 Examples

__
 - 55 -

7. EXAMPLES

Installation of the OptiM contains few examples of projects with definition of
optimization tasks. Typical structure of the catalogues Fig. 6.1 in the project consists of
sub-catalogs Input, Lib/Python/Matlab, Output and the project file for OptiM *.om.
Catalogue Input contains files with the design variables. Structure of the file is self-
explanatory. First is the version number of the file *.var. Next is a header line explaining
what contain the columns: Id of the variable (the same number should be used in the
dynamic library for the table with the optimization variables X[Id]), name of the optimization
variable, minimum value of the optimization variable, maximum value of the optimization
variable, optional comment. Catalogue Lib contains source code of the dynamic library
with the optimization task. Optionally catalogues Python, or Matlab may contain scripts
with the optimization task. Catalogue Output is the output directory for computed data and
logs from the optimization process.

Figure 7.1 OptiM project catalogues structure.

Normally to run the optimization problem user has to compile the dynamic library

for OptiM with defined optimization task, as described briefly in chapter 3.2. The examples
are already precompiled and can be optimized immediately. Examples should be read in
through Menu > Parameters > Load and selecting Project.om file. Before running
optimization on the examples, working directory of a project has to be set in Menu > File
paths. Also file path to the dynamic library from examples might have wrong ending due
to the operating system. Ensure that for Windows dynamic library ends with .dll, and for
Linux systems .so. If the working directory won’t be set, or will be set incorrectly warning
messages will appear and correction will be needed.

7.1 EXAMPLE – PARABOLOID

This is very simple example with mathematical function of paraboloid, with shifted

minimum point to [-30, 20]. The paraboloid is described by equation (6.1). Analytical
optimum is described by (6.2).

 Examples

__
 - 56 -

 2

1

2

00
2030 xxff

obj
 (6.1)

0
min

f for 30
0

x 20
1
x (6.2)

7.2 EXAMPLE – ROSENBROCK FUNCTION

This example is based on the general Rosenbrock function (6.3), called also

Rosenbrock valley, or Rosenbrock banana function. It is often used as a bench mark for
performance of optimization algorithms. To get to the optimum point directional algorithms
have to change the direction of search. Path of the minimum points lies at the bottom of
the valley. Sides of the valley are very steep and the path of minimum points descends
very slowly. It is easy to get on the path, but hard to follow it. Part of the algorithm
responsible for the direction estimation has to be very effective.

In the example typical constants are assumed and have values of a=100, b=1
creating specific Rosenbrock function (6.4). Equation (6.4) is also assigned to f0 function,
which can be printed and plotted during optimization. Additional functions for printing and
plotting f1 (6.5) and f2 (6.6) are defined, which help to understand the influence of the
separate parts of the Rosenbrock equation. Analytically solution of the minimum of the
function (6.4) is presented as (6.7).

 2

0

22

01
xbxxaf

obj
 (6.3)

 2

0

22

010
1100 xxxff

obj
 (6.4)

 22

011
100 xxf (6.5)

 2

02
1 xf (6.6)

0
min

f for 1
0
x 1

1
x (6.7)

7.3 EXAMPLE – ROSENROCK MULTIDIMENSIONAL

The example is an extension of the previous one. The Rosenbrock function has

multiple optimization variables and can be described by the equation (6.8). After setting
the constants to a=100, b=1 function (6.9) is obtained. Because of the multiple variables
solving the problem for minimum becomes much harder. Function (6.9) has one global
minimum for n=3 (6.10) and additional local minimum for n=4 to n=7 (6.11).

 Examples

__
 - 57 -

1

1

222

1

n

i

iiiobj
xbxxaf (6.8)

1

1

222

10
1100

n

i

iiiobj
xxxff (6.9)

0
min

f for 3n 1
i

x (6.10)

0
min_

local

f for 74 n 1
0

x 1
i

x (6.11)

7.4 EXAMPLE – RASTRIGIN FUNCTION

The Rastrigin function (6.12) is also often used as a bench mark for optimization

algorithms. The function has number of local minimums. Directional algorithms will quickly
get caught in one of the local minimums. Only heuristic algorithms, with global field of
search through the design variables, will be able to find the global optimum.

In the example two dimensional function is considered and A=10, which produces
particular function (6.13). Analytical solution for minimum is (6.14).

n

i

iiobj
xAxnAf

1

2
2cos (6.12)

2

1

2

0
2cos1020

i

iiobj
xxff (6.13)

0
min

f for 0
0
x 0

1
x (6.14)

The example shows the simplest possible way to execute external program for

analysis. Except of the dynamic library, also simple program is compiled with the Rastrigin
function, which will be computed inside. Normally the program will be dedicated software
(often commercial) for sophisticated analysis, which runs in a butch mode.

WARNING! for people with epilepsy! Analyzed program is executed multiple

times and blinks fast on screen.

Optimization can be run parallel. In that case user has to remember to provide

separate names of configuration files for every thread. Otherwise parameters will be read
and written to the same files, which will result in an unexpected behavior.

 Examples

__
 - 58 -

7.5 EXAMPLE – WING OPTIMIZATION

The example shows, practical optimization problem of the airplane’s wing, with

electric propulsion. Vertical forces: lift force and weight of an aircraft (6.15) and horizontal
forces drag and thrust force (6.16) should be equal. The equation (6.16) can be also
viewed in terms of power balance. After derivation of flight velocity (6.17) from equation
(6.15) it can be put to equation (6.18) for power balance. Making the numerical model
closer to real flight conditions power consumption of on board electronics and efficiency
coefficients have to be incorporated (6.19).

SCVgm
L

2

2

1
 (6.15)

SCVT
D

2

2

1
 (6.16)

SC

gm
V

L

2
 (6.17)

SCL

gm
TVTP

flight

2
 (6.18)

bec

payloadavio

propgrbmotesc

flight

total

PPP
P

 (6.19)

More power needed for extended time of flight means bigger butteries for power

supply (6.20). Increased mass of butteries forces heavier aircraft structure and propulsion
system. The mass of the structure for small aircrafts can be approximated with good
accuracy with equation (6.21), dependent on wingspan and wing aspect ratio. Mass of
propulsion system depends mainly from power needed for flight and can be approximated
with equation (6.22).

battdchrg

total

batt
k

tP
m

 (6.20)

25.01.3

44.0

 ARbm
struct

 (6.21)

flightpropulsionpropusion
Pkm (6.22)

Friction drag is corrected for changing low Reynolds numbers, approximately below

Re ~500000, which is often the case of small electric UAV aircrafts. The second
improvement is dropped simplification for small climb angles, which is often not true for
small electric aircrafts with proportionally big motors.

 Appendix

__
 - 59 -

APPENDIX A - LIST OF OPTIM KEY SHORTCUTS

File

Parameters Ctrl + P
Open Ctrl + O
Save Ctrl + S
Data Format Ctrl + D
Parallel Ctrl + L

Optimization

File paths Ctrl + F
Initialize Ctrl + I
Solver
 Tester T
 Annealing 1
 HookJeeves 2

Powell 3
NelderMead 4
Gradient 5

 Monte Carlo 6
 Genetic 7
 Swarming 8

Annealing Shift + Ctrl + A
HookJeeves Shift + Ctrl + J
Powell Shift + Ctrl + W
NelderMead Shift + Ctrl + N

Gradient
 Direction Shift + Ctrl + D
 Alfa Search Shift + Ctrl + F

Monte Carlo Shift + Ctrl + M

Genetic Algorithm
 Genetic Selection Shift + Ctrl + G
 Genetic Methods Shift + Ctrl + E

Swarming Shift + Ctrl + S
Stop Criterion Ctrl + C
Flags Ctrl + F

Help

Manual Ctrl + H

